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Abstract

This is the report of the Invitational Workshop on Public Key Infrastructure, which was

jointly sponsored by the National Institute of Standards and Technology (NIST), the

Security Infrastructure Program Management Office (SI-PMO) and the MITRE
Corporation. A public key infrastructure provides a means for issuing and managing

public key certificates, which may be used to provide security services, such as

authentication, integrity, confidentiality and non-repudiation, between strangers who have

no previous knowledge of each other. Papers were presented on the current state of

technology and standards for a Public Key Infrastructure, management and technical

issues, escrowing keys used for confidentiality exchanges, and cost models.

Disclaimer

The views expressed by the participants of this workshop are their own and do not

necessarily reflect those of the sponsoring organizations. Proprietary names and model

numbers are cited for clarity and do not imply recommendation or endorsement by the

sponsors.
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Introduction

Message From the Co-Chairs

Robert Rosenthal, Co-Chair, NIST

Many government and industry organizations recognize the need for privacy and security

in the National Information Infrastructure or NIL Important applications in business,

medicine and other areas are likely to use public key cryptography and digital signature

mechanisms to provide integrity, authentication, nonrepudiation and confidentiality key

management security services. These powerful security techniques, when provided on a

large national or worldwide basis, will enable secure transactions among partners who
may never meet each other personally, where their transactions may be exposed to

unknown parties and where untrusted communications and storage systems may be

prevalent. The opportunity exists now to develop a ubiquitous, interoperable Public Key

Infrastructure (PKI) meeting the widest spectrum of government, industry, and personal

needs.

The federal government has begun work on the design of a Public Key Infrastructure to

support the management of the public key certificates and keys it needs. Guidance for

this work comes from many sources including our own internal research projects,

cooperative programs with industry, other federal agencies, and, interactions in open

forums like this invitational workshop. At NIST, we actively solicit inputs from

designers and users alike to mold and formulate the ideas that drive our government

programs in this area.

We are pleased to have worked with the MITRE Corporation and the General Services

Administration to plan, execute and participate in this workshop. A clear result of the

discussions was the need for and willingness of the participants to cooperate and share

information in this dynamic area.

Richard J. Kemp, Co-Chair, SI-PMO
The electronic business of Government requires security services to be viable. In the

traditional data security model, there are five basic security services offered to end users

and their applications: Authentication, Access Control, Data Integrity, Non-Repudiation,

and Confidentiality. As a practical matter, these services cannot be delivered in an

internetworked world (the one we are moving towards) without a Public Key

Infrastructure. PKI is the essential enabling technology for accomplishing business

objectives in a secure fashion.

The purpose of the Federal Information Security Infrastructure Program Management

Office (SI-PMO) is to provide government wide support and coordination of Federal

activities necessary to implement an information security infrastructure for the use of the

Federal Government. Since the private sector will lead in the development and

implementation of end application security solutions, the SI-PMO will, in coordination

with NIST, interact directly and continuously with private industry. The SI-PMO must
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articulate the needs of the federal government as a customer community, and also

understand the commercial offerings, and how commercially available information

security solutions can be applied to solving the government's problems.

Public forums and workshops such as this one, serve to ensure the interchange of

information most necessary for the effective development and implementation of the

security infrastructure. We look forward to continued joint efforts with NIST, the

MITRE Corporation, and other activities to share information and experiences in this

vital evolving technical area

Shirley Kawamoto, Co-Chair, MITRE
The MITRE Corporation has worked with public key cryptography for our customers and

on our own behalf for some time. Among other efforts, we conducted the Public Key

Infrastructure Study, under NIST sponsorship, and are now working toward the

implementation of a digital signature capability for our own use. This work has made us

aware that the creation of a Public Key Infrastructure is necessary before digital

signatures and other public key applications critical to the implementation of the broader

information infrastructure can be achieved.

METRE'S participation in the PKI Workshop was motivated by a desire to exchange

information with others working in the area. Holding the workshop was one way to

assemble the parties who could contribute different perspectives and have discussions

leading to more understanding of PKI issues and solutions.

The workshop met our goals. The standards community and implementors, government

and industry, users and vendors were all represented. Several different countries were

represented. The papers presented, as well as the accompanying discussions, were

instructive and thought provoking. I want to thank all of the participants for making the

workshop a success.
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Compact Certification of Public Keys 1

by

Silvio Micali

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract. We put forward a PRACTICAL method for certifying public

keys. Our method works with an arbitrary hierarchy of authorities, and

always produces very short certificates, independent of the number of au-

thorities.

1 The Problem of Public-Key Certification

PUBLIC KEYS. Ever since the Diffie-Hellman cryptosystem and the RSA,
public-key cryptography has been the system of choice for a variety of tasks;

most prominently, encryption and digital signatures.

In a public-key encryption scheme, each user U computes a pair of match-

ing keys: an encryption key PKu and a corresponding decryption key SKu-
Informally, such a pair of keys possesses the following two properties:

1. knowledge of SKu enables one to efficiently decrypt any message en-

crypted with PKu
;
and

2. PKu does not “betray” SKu (i.e., knowledge of PKu does not help

one to compute SKu in any efficient way).

User U publicizes PKu (which is thus also referred to as U's public key)

and keeps secret SKu (which is thus also referred to as U’s secret key).

Because of property (1), the publicity of PKu enables anyone to send U an

encrypted message understandable by U
,
without having agreed beforehand

on a common code with U. Because of property (2), despite the publicity of

PKu-, only U can understand the encrypted messages sent to him.

1The technology of this paper is protected by U.S. Patent No. 5,420,927
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In a digital signature scheme, each user U computes a pair of matching

keys: a verification key
,
denoted by PKu, and signing key

,
denoted by SKu-

Again, PKu does not betray its corresponding SKu
,
U publicizes PKu and

keeps secret SKu (which explains both why PKu and SKu are also called U :

s

•public and secret keys, and our choice of notation). User Vs digital signatures

are strings possessing the following (informally expressed) properties:

1' The digital signature of U of a message m is easy to compute with

knowledge of SKu ,
but practically impossible to compute without it.

On the other hand,

2' Just knowledge of PKu suffices to verify whether a given string a is

Vs digital signature of m.

In sum, anyone can (knowing PKu) verify Vs digital signatures, but only U
can (knowing SKu

)
produce them.

The NEED for public-key CERTIFICATION. The usefulness of a public-

key system crucially depends on the publicity of its public keys. Indeed, the

more PKu is known to be Vs public verification key, the more people can

verify Vs digital signatures.

Equally crucial to the system, however, is the genuinity of its public keys

(i.e., ensuring that each public key is correctly associated to his owner).

Indeed, let X be an impostor who computes a pair of matching verification

and signing keys, (V,5). Assume now that X and succeeds in convincing a

user Y that V is the verification key of U . Then, knowing the corresponding

signing key S, X can easily digitaly sign any message m relative to V . Thus,

each such signature will be believed by Y to be generated by U

.

To ensure both publicity and genuinity, there is a general consensus that

public keys should be certified. But, how should we certify public keys

?

For the sake of concreteness, let us discuss the issue of public-key certifi-

cation when these public keys are the verification keys of a digital signature

scheme. (The same problems and solution arise if they were public encryption

keys, or any other type of public keys.)

Should it be common knowledge that PKu is the verification key of user

U, then there is no need of certifying it: PKu can be considered de facto

certified. It appears, however, that this common knowledge can arise only

for the keys of very few individuals or institutions.
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A very simple certification method may consist of having the user himself

distribute in person his public verification key (e.g., to his closest friends on

new-year’s eve). Such a method, of course, is hardly practical on a large

scale.

A more practical method consists of having an authority A give each

user U a certificate for his public key PKu . Assume that A has an already-

certified public verification key (e.g., one that is common knowledge to all

users in the system). Then, this certificate may consists of A’s digital signa-

ture of, say, the following declaration “PKu is the public verification key of

user UP This declaration may be expressed in a suitably standard format.

For concreteness, let A digitally sign (an encoding of) the pair
(U,PKu ).

2

Let us denote this signature/certificate as SIGa{U, PKu)- This certificate

is issued by A only after she has made sure that U is the owner of PKu
,
so

as to enforce genuinity.

This certificate for PKu may be inserted in a data base widely accessible,

or, better yet, be given to U himself. The latter option enables U to present

the certificate for his public key whenever he presents his digital signature of

some message m, SIGu (m), relative to that key. This gives the recipient of

Vs digital signature all he needs to verify it. Indeed, to verify that SIGu{rn
)

really is Vs digital signature of m, the recipient performs two steps. First,

he verifies that SIGu{m) is a correct digital signature of m relative to the

verification key PKu (no matter to whom PKu may belong). Second, he

verifies that SIGa{U, PKu) is the correct digital signature of A —relative

to her already certified public key— of the pair
(U,PKu ).

HIERARCHICAL CERTIFICATES. Unfortunately, the last envisaged public-key

certification is only deceivingly practical. This is so because of the genuin-

ity requirement. Indeed, in order to certify that a user U is the owner of

verification key PKu
,
authority A must perform some type of check. For

instance, she may verify Vs identity via an ID card. Alternatively, in order

to make sure that U indeed owns PKu (and thus knows its corresponding

secret signing key SKu ), A may ask U to sign a standard message, such as

“This is just a try.” Better yet, she may ask U to sign “This is a try, R”

where I? is a number that A randomly chooses after U presents her with

2 Alternatively, A may digitally sign the string obtained by concatenating U with PKu
(assuming that U represents both the user and his identifier, and that each identifier has

the same length, so that it will be clear where U ends and PKu begins).
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PKjj .

3 In general, U may be asked to undergo a variety of checks before

A digitally signs
(
U,PKjj ), and some of these may require U to appear in

person before A.

Now, while a reasonable computer may be able to produce the digital

signatures of millions of certificates per year, it is inconceivable that a single

authority may properly identify millions of users per year. Thus, to enforce

properly the genuinity requirement, there must be not just a single authority

A
,
but numerous such authorities: Ai,A.2, ... For instance, each Ai may be

a branch of the Post Office or of a given Bank. Indeed, such entities are

already trusted to a large extent, and are well distributed over the territory

so that it is not too inconvenient for a user to access one of them.

It is not advisable, however, that all authorities share the same secret

signing keys. In such a case, in fact, the issuer of a certificate would be

untraceable, and untraceability and corruptability tend to travel together...

Assume, therefore, that each authority Ai has her own public verification

key, PKi
,
and its corresponding secret signing key, SKi. Then, each A{ may

produce a certificate for the public key of a user U by signing (£/, PKu)
relative to her own public key PKi.

Now, a new problem arises: while in the case of a single authority, A, it is

reasonable to assume that A’s verification key needs no certification because

it is universally known within the system, it is unreasonable to hypothesize

that the same holds for each PKi. Thus A,’s certificate for PKu is not a

“self-contained” document: one can verify that the certificate consists of a

digital signature of (U,PKu) relative to some key PKi ,
but one has no idea

whose public key PKi may be (nor whether A{ is a proper authority).

For this reason, it has been suggested that a certificate for PKjj should

not only include A
t
-’s signature of, say, (U,PKu) relative to PKi

,
but also a

certificate for PKi. For instance, assume that authority Ai actually is the tth

branch of some bank B, and that user U accesses Ai for obtaining a certificate

3Indeed, if a legitimate user U has already got a certificate for his public key PKu, and

an impostor X succeeds in getting hold of his signature of a fixed standard message—such

as “This is a try”— then he could succeed in having PKu be certified also as I’s public

key. Indeed, he may go to the authority, identify himself as X, and present PKu, as his

selected public key, together with a digital signature, relative to PKu

,

of “This is a try.”

Though it is not immediately clear what X might do with such a certificate —since this

depends on which other protocols are in place in the system— it is advisable to prevent

such “cheating.”
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for his public key PKu . Then, this certificate will comprise SIGfiU, PKu),
the digital signature of branch relative to PKi, as well as PKi itself and

bank P’s digital signature of (A,-, PKi), Pit',), relative to its own
public key, PKb-

Similarly, however, one cannot expect the public key of every bank B to

be universally known. Thus, the certificate for PKu must also include PKb
and the signature of—say— the Federal Reserve of the string PKb

,
relative

to its own verification key PKfr Since this last verification key may not be

universally known either (e.g., abroad), PKfr and a certificate for PKfr
must also be included within the certificate for PKu

-

And so on.

We call the resulting, nested, certificates hierarchical certificates.

The COSTS OF HIERARCHICAL CERTIFICATES. A main drawback of hier-

achical certificates is their being very long. Indeed, a user’s digital signature

of a message may consist of a few hundred bits, but the certificate of his

public key may easily require several thousand bits. In many applications,

messages come in a standardized format (think of an electronic transfer) and

can thus be represented quite compactly. In these cases, therefore, the length

of a message and that of a user’s digital signature of the message will be to-

tally overpowered by the length of the user’s hierarchical certificate for his

public key.

The excessive length of hierarchical certificates translates in significant

costs of various types.

1. Transmission Costs. In most electronic transactions, a user transmits

his digital signature of a message over the phone or over a computer

network. Thus, if the user also transmits a hierarchical certificate for

his public key, then electronic transactions will be considerablly slower

and more expensive. Indeed, the transmission of a hierarchical certifi-

cate requires the transmission of thousands of bits, and this requires

additional time (e.g., via a modem) and additional financial costs (e.g.,

via a long-distance phone call).

2. Storage Costs. In many applications, digital signatures need to be

stored for a long time, and (as long as one wishes to store self-contained

documents) so need public-key certificates. Thus, the use of hierarchical

certificates would force recipients to store thousands of additional bits
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for each stored digital signature. This additional storage adds consider-

ably to the recipient’s overall costs and inconvenience. Indeed, storing

very many bits reliably is quite expensive. Moreover, in certain ap-

plications (e.g., smart-card ones), the memory of the verifying/storing

device may be quite limited, so that it simply cannot store more than

a handful of hierarchical certificates.

3. Verification Costs. Verification of a digital signature also has computation-

and thus time-costs that are not trivial. And hierarchical certificates

cause these costs to increase by several folds. Indeed, each hierarchical

certificate requires the verification of several, independent signatures.

Again, these costs may translate into a financial one (because faster

processors ought to be used at verification sites, and faster processors

are more costly).

In sum, hierarchical certificates do provide self-contained documents, but

suffer from the problem of being inconvenient and expensive. Let us thus see

how to solve this problem, while retaining the original advantages.

2 Our Solution

Let us now describe a method that uses any digital signature scheme for com-

puting short certificates for arbitrary data, and for users’ public verification

keys in particular. We call our certificates compact because they are much
shorter than hierarchical certificates, and because their length stays the same

no matter how many levels of authorities there may be in a particular system.

Assume again that there is some n-level hierarchy of authorities, and

denote by A],A\, ... first-level authorities (i.e., those dealing directly with

the users who whish to register their own public keys —e.g., bank branches),

Aj, Aj, . .

.

second-level authorities (e.g., banks), and so on. Denote by PK-
the verification key of authority A:-. While the public keys of the authorities

of the first n — 1 levels may not be widely known, assume that the verification

keys of the n-level authorities, the A”’s, are universally known or already

certified.

COMPACT CERTIFICATES. Let U be a user who has selected
(PKu ,

SKu )
as

his verification-signing pair and now wishes to obtain a compact certificate
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for PKu Then, U accesses a first-level authority of his choice, A}, and
undergoes the necessary tests to ensure that he is the legitimate owner of

PKu . If these tests are passed, A] testifies this to an authority of the second

level, Aj. This can be done in a suitable standard format; for instance, A]

sends Aj her signature of
(U,PKu ), relative to PK}. Preferably, each first-

level authority accesses a well defined second-level one in this manner. Upon
receiving Aj’s digital signature of

(U,PKu ), Aj can immediately verify it

because she knows the public keys of all the first-levels authorities directly

below her. If the signature is indeed correct, then Aj sends A\, the third-level

authority directly above her, her own signature of (U, PK), relative to PK%.
And so on, until some n-level authority A” receives the digital signature

of
(U,PKu )

from an authority of level n — 1, whose public key is known
to Ax . If this signature is also correct, then Ax digitally signs

(U,PKu )•

This last signature constitutes the desired certificate for PKu . We call such

a certificate compact because it comprises the digital signature of just one

authority.

The new certificate may be given to U directly by Ax (indeed, his elec-

tronic address may also be sent “up the authority-path”), or may be handed

“down the authority-path” so that it will be A] to give A”’s digital signature

of (U, PKu )
to U as his certificate for PKu • In either case, producing a new

certificate will not take very long. Indeed, the all process can be totally au-

tomated. Notice, in fact, that, except for the first-level authority who must

perform identification or other particular tests, each authority must just ver-

ify a signature (relative to some known public key) and produce a signature.

Thus, assuming for concreteness that there are 10 different levels of authori-

ties, a compact certificate requires the generation and the verification of 10

digital signatures, and 10 message exchanges. If properly done, this time

may not exceed that taken by the interaction of the user with the first-level

authority. In any case, the user will enjoy considerable benefits every time

he transmits his certificate.

A compact certificate is very short because it does not need to comprise

any public key (other than PKu) nor any other signature (other than A”’

s

one) when the verification key of any n-level authority is well known. (Else,

a compact certificate should contain a certificate for A"’s public key, but

it would be shorter than a hierarchical certificate for PKu because it would

skip the public-key certification of all intermediate authorities.) Accordingly,

it has much lower transmission, storage, and verification costs than a hierar-
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chical certificate.

ENRICHING COMPACT CERTIFICATES. Above, we have envisioned compact

certificates indicating that a given public key belonged to a given user. This

information may be sufficient in some cases, but not in others. For instance,

it does not indicate the type of checks performed by the first-level authority.

Indeed, if U is a notary public, it would be a better idea to perform more

checks than for a regular user and to indicate this additional information in

the certificate itself.

This additional information may be easily included in an enriched compact

certificate
,
and without increasing its length by much. For instance, each

check may have a code name, and the code names of the optional checks

actually performed may be incorporated in the certificate in the form of a

string C. Indeed, the authorities “send upwards” their digital signatures of

([/, PKu,C), rather than just
(
U,PKu ), and it is the digital signature of

(U, PKu,C) by a n-level authority that constitutes the enriched compact

certificate for PK\j.

A compact certificate can actually be enriched with any other additional

information that is deemed valuable. For instance, such additional informa-

tion, AI
,
may indicate that U is a notary public, that U has special duties

and privileges, time information, etc. In particular, such additional infor-

mation may include the name of the first-level authority who dealt with the

user. This very valuable piece of information can be represented by very

few bits, because the name of an authority (unlike her public key) may be

quite short. For instance, if the first level authorities are Post Offices, their

names can coincide with their 5-digit Zip Code. Indeed, even the full path of

authorities leading from the one who deals with the user to the final n-level

authority may be easily incorporated in an enriched compact certificate, if

so wanted.

Of course, such additions carry additional costs, but these cost increases

would have arisen also for hierarchical certificates.

Store-and-forward generation of COMPACT CERTIFICATES. Finally,

let us mention one simple, low-cost, and important improvement to the gen-

eration of compact certificates. When an authority of level y , Af, sends

the proper authority of level y + 1, AJ
+1

,
her own signature of (t/, PK, AI)

—where AI stands for the additional information deemed appropriate— rel-
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ative to her own public key PKf ,
Aj

+1 may store Af’s signature, and then

forward her own as before.

This step allows a higher degree of control over the authorities. In partic-

ular, a higher level authority cannot be corrupted so as to “initiate” a fake

certification for PKu by just sending, to the authority above her, her own
signature of (£/, PKu ,

AI) without having received anything from an author-

ity directly below her. If an audit about a given user/public-key certificate

occurs, she must produce the digital signature of the authority below her.

Now, unless this signature has indeed been received by her and kept in stor-

age, this would be hard to do. Indeed, each authority may easily verify the

signature of the authorities below her (because she knows their public keys)

but not produce them (because she lacks their signing keys).

It should be noted that the cost of this extra storage is borne by the cer-

tification authorities, and not by the users (and it is to be expected that the

formers are properly equipped for this task). Notice also that the cumulative

storage requirement of the store-and-forward generation of compact certifi-

cates is reasonably small. Indeed, if there are ten levels of authorities, then

for each public key ten digital signatures must be stored: one for each au-

thority along a 10-long path. Therefore, this storage is roughly that required

to store a single hierarchical certificate in a system with the same level of

authorites. However, in the latter case (if one wishes to keep self-contained

documents), this storage price must be paid by the users, and for each digital

signature rather than for each public key!
4

In SUM. Compact certificates are just as informative, secure, and easily

implementable as hierarchical ones, but they are much shorter and more

convenient all around.

4The latter storage requirement can be slightly improved, but at an extra cost. For

instance, if a user V realizes that he has already received two signatures relative to the

same public key PKu

,

then he can store just one certificate for PKu-

9
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Requirements

• One key pair and certificate suitable for many different

applications

• Scalability

• Interoperability of separately-administered

infrastructures

• Support for multiple different policies in one
infrastructure

• Users and domain administrators can manage trust

relationships, including multi-domain chains

• Automated key-pair life cycle maintenance
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X.509 Evolution

• 1988: X.509 vl certificate

• 1 993: PEM - X.509 infrastructure with restrictions

• 1993: X.509 v2 certificate adds Uniqueld fields; CRL
revised to align with PEM CRL

• July 1994: ISO/IEC/ITU proposes X.509 corrigendum,

to add extension mechanism to certificate and CRL;
working draft on standard extensions issued

• October 1994: ANSI X9 (Financial Services) adopts v3
certificate format for draft standard X9.30-3

• July 1995: ISO/IEC/ITU corrigenda defining X.509 v3
certificate and v2 CRL adopted, Draft Amendment on
standard extensions issued for final ballot

• April 1996: Final ballot resolution on DAM 3

The X.509 Certificate (vl and v2)

version (vl or v2
)

serial number
signature algorithm id

issuer name
validity period

subject name
subject public key info

issuer unique identifier

subject unique identifier

vl (1988)

Added for

v2 (1993)

Signed by issuer (CA)
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PEM - Certification Authorities

IPRA = Internet Policy
Registration
Authority

PCA = Policy Certification

Authority

CA = Certification

Authority

A CA is certified by another CA or by one or more PCAs

A CA below the PCA level can only issue certificates for X.500 names
which are subordinate to that CA’s name

5

PEM/X.509 Shortcomings

• An X.500 name does not adequately identify a subject

to a certificate user

• PEM CA hierarchy is too rigid for many applications

• Certificate chains should start at point of most trust—
often close to certificate user, not at top of hierarchy

• PCAs are an unwieldy way of managing policies

• Name subordination rule does not fit with regular X.500

naming

• No support for key life cycles

• Revocation lists (CRLs) can grow excessively large
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DoD MISSI Certificate Needs

7

The X.509 Certificate (v3)

version (v3)

serial number
signature algorithm id

issuer name
validity period

subject name
subject public key info

issuer unique identifier

subject unique identifier

extensions

Signed by issuer (CA)

criticality

flag

extn.a crit. value

extn b crit. value

extn.c crit. value

8

4



X.509 Version 3: Policies and Constraints Warwick Ford

Extension Criticality

• An extension field comprises:

-extension type identifier (ASN.1 object identifier)

-criticality flag

-extension field value

• Criticality flag indicates whether an implementation

which does not understand an extension may or may
not safely ignore it

• Noncritical extensions do not inhibit interoperability

• Public-key-using systems/applications and specific

policies have their own requirements as to what
extensions must be present— this is NOT related to

criticality

9

Key/Policy Information Extensions

• Authority Key Identifier: Identifies CA signing key by key-id

or issuer/serial-no. pair

• Key Attributes: Subfields for:

- key-id
- key usage indicator

- private key usage period

• Certificate Policies: Carries policy identifier(s), with

optional qualifier(s)

• Key Usage Restriction: Critical extension restricting use to

specific policy(s)

• Policy Mappings: Mapping of policy id at domain boundary

10

5
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Subject/Issuer Attribute Extensions

• Subject Alternative Name

-Internet RFC822 Name

-Internet DNS name

-X.400 Address

-Another X.500 name

-Private name form

• Issuer Alternative Name

• Subject Directory Attributes: Any other X.500
attributes that may help in identifying a subject, e.g.,

postal address, corporate title, photograph

Chain Constraint Extensions

• When one CA certifies another, the issuer CA may
constrain what certificates the subject CA can issue

• Basic Constraints

-CA-or-End-Entity indicator

-For a CA, can also limit chain length

-Subtrees constraint

• Name Constraints:

-Can constrain CA to a specified name space or set

of name spaces
-Can stipulate name subordination to apply

immediately or further down the chain (including

subordinate-to-CAs-superior option)

• Policy Constraints:

-Can require explicit policy identifiers

-Can inhibit policy mapping 12

6
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Example Chain Structure

Domain A Domain B

13

Policy-related Extensions

• A certificate policy is a published statement about CA
policies and procedures, which a certificate user can

use to decide if a given certificate is suitable for its

purposes

• A certificate policy is registered and assigned a unique

ASN.1 object identifier

• Certificate Policies extension: Carries policy

identifier(s), with optional qualifier(s)

• Policy Mappings extension: Mapping of policy id at

domain boundary

• Key Usage Restriction extension: Critical extension

restricting use to specific policy(s)

14

7
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Example Certificate Policies

• U.S. Government:

- IRS-Taxpayer-ldentification policy (defined by IRS)

- Govt-Employee-Identification policy (defined by Govt. Policy

Registration Authority)

- Govt-Public-ldentification policy (defined by Govt. Policy

Registration Authority)

• Financial Industry:

- Retail Low-value Transaction policy (defined by ABA)

• Network Service Provider:

- AT&T Subscriber policy (defined by AT&T)

- AT&T Operations policy (defined by AT&T)

15

Example Multi-domain Scenario

• For its tax-filing application, the IRS is prepared to

accept tax returns signed using digital signatures

certified by a range of different service providers, e.g.,

AT&T

• The IRS tax return receiving application (which verifies

the signatures) is supplied with the public key of some
IRS CA (e.g., IRS-CA#15), and is told to accept only

chains with certificate policy “IRS-Taxpayer-

ldentification”

16

8
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Example Chain Structure

IRS Domain AT&T Domain

17

Naming Constraints

• Subtrees constraint

-in Basic Constraints extension

-added in PDAM ballot resolution

-may obsolete Name Constraints extension

• Name space constraint, Name subordination constraint

-in Name Constraints extension

18

9
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Subtrees Constraint

• Restricts all subsequent names in a certificate chain to

being subordinate to one of a set of specified subtree

roots

• Example: Organization Acme’s primary CA is certified

to only issue certificates in the subtrees:

-c=US, o=Acme Inc.

-c=UK, o=Acme Ltd.

• The same constraint is inherited in subsequent
certificates, e.g., in certificates issued by CAs
subordinate to Acme’s primary CA

19

Name Constraints

• Name space constraint

-restricts name space for

which subject CA can
issue certificates (not

necessarily inherited by
subsequent CAs in a
certificate chain)

-can be specified as a set

of subtrees, each
restricted to a certain set

of levels

20

10
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Name Constraints

• Name subordination constraint

-indicates that from some point in the chain

onwards, subject names must be subordinate to

issuer names

- subordinate-to-CAs-superior alternative

eliminates major objections to subordinate-to-CA

Permitted

subjects

Subordinate-to-CA Subordinate-to-CA’s-superior

21

Summary

• X.509 v3 certificate addresses several problems
apparent in PEM/X.509 design

• X.509 v3 format now adopted; standard extensions in

final ballot round

• Certificate Policies provide means for PKI to support

different applications and span different domains

• Naming constraints provide means for controlling trust

further along certificate chain

• Subtrees Constraint may make Name Constraints

obsolete

22

11
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ABSTRACT:

Many vendors who need security for their networking applications often assume that RSA is the

only public-key technique available. Just as secure and easier to use than RSA are the techniques

based on extensions to the original public-key paper by Diffie and Heilman [1]. In this note we
describe the various applications of public-key cryptography and show how these Diffie-Hellman

(DH) based techniques perform the same functions as RSA.

INTRODUCTION:

In 1976, Diffie and Heilman [1] started an explosion ofopen research in cryptology when they

first introduced the notion of public-key cryptography which allows for new electronic means to

handle key distribution in conventional cryptographic systems and for digital signatures in

electronic messages. In this original paper Diffie and Heilman gave a limited example of a public-

key system which is known today as the Diffie-Hellman key exchange. Later in 1978 Rivest,

Shamir, and Adleman [2] gave a complete example of a public-key system that is popularly known

as RSA. This RSA system can perform both key distribution and digital signature functions.

RSA can also be used for encryption but here it has no practical advantages over conventional

encryption techniques which are generally much faster.

It turns out that the original example given by Diffie and Heilman had the elements of a complete

public-key system. This was discovered by El Gamal [3] who added the digital signature feature

to the original Diffie-Hellman key exchange ideas. In 1994, the National Institute of Standards

and Technology (NIST) adopted the Digital Signature Standard (DSS) based on a variation of

this El Gamal digital signature [4], Thus the Diffie-Hellman key exchange together with its

extension to digital signatures in the form ofDSS can do the same public-key functions that RSA
can perform.

We first present a general discussion ofthe public-key method for creating digital signatures and

the use of certificates. This is followed by a general discussion ofthe key distribution problem in

conventional cryptographic systems. The remaining sections describe how the Diffie-Hellman key

exchange with DSS can accomplish all the same functions as RSA in all the important applications

of public-key cryptography.



DIGITAL SIGNATURES AND CERTIFICATES:

With both RSA and DSS, a person’s digital signature is based on a unique pair of numbers; one

that is private and another that is public. Although mathematically related, knowing a person’s

public number does not reveal the corresponding private number. Alice, for example, can use her

private number to create a digital signature attached to her electronic message. Later another

person, say Bob, can easily authenticate Alice’s digital signature by only using Alice’s public

number. Bob can also verify the integrity ofthe message that Alice signed. As long as Alice

keeps her private number secret, nobody can counterfeit her digital signatures while anyone can

both authenticate her digital signatures and verify the integrity ofher signed messages by using

only her public number.

To make practical use of public-key digital signatures there needs to be established a trusted

certification authority which also has a private number and public number. It is assumed that

everyone in the system has knowledge ofthe public number ofthe certification authority. Thus

everyone can verify the digital signatures and the integrity of any signed message ofthe

certification authority.

Alice must first identify herselfto the certification authority and submit her public number to be

certified. Once the certification authority is satisfied it has properly identified Alice, it can create

a message that consists of Alice’s data (it may include, for example, her name, address, social

security number, unique privileges, time of expiration, and her public number) which is then

digitally signed by the certification authority using its private number. This electronic message

that is signed by the certification authority is Alice’s certificate. It is assumed that everyone in the

system obtains such a unique personal certificate from the certification authority. It is also

assumed that everyone in the system can verify the integrity ofthe data in any certificate issued by

the certification authority.

The United States Postal Service will be offering the first government certification authority in the

summer of 1996. A complete network of such trusted certification authorities will be needed for

widespread use of digital signatures. The government’s planned system of certification authorities

is called the Public-Key Infrastructure (PKI).

Once Alice has her certificate, she can attach it to her signed messages. To authenticate Alice’s

signature. Bob can first authenticate her certificate and recover Alice’s public number. He then

uses what he knows is Alice’s public number to authenticate her digital signature and verify the

integrity ofthe message she signed.



CRYPTOGRAPHIC STRENGTHS OF RSA AND DIFFIE-HELLMAN BASED
SYSTEMS:

The cryptographic strength ofthese public-key systems depend on how difficult it is for anyone to

compute a person’s private number given only the person’s corresponding public number. For

RSA this is based on the difficultly of finding the prime factors of a large integer while the Diffie-

Hellman based systems depend on the difficulty ofcomputing discrete logarithms in a finite field

generated by a large prime number. Both ofthese are well known “hard to solve” mathematical

problems. Although the discrete logarithm problem is believed to be more difficult to solve than

the factoring problem, in practical terms the differences are not important [5,6,7].

In terms of ease of computations, there is also not much of a difference between the Diffie-

Hellman based systems and RSA. Depending on the circumstances, there may be a computational

advantage with one method over the other but with today’s high speed processors and custom

chips these differences are not significant for numbers from 512 bits to 1024 bits in length.

Debates have been going for some time comparing various properties of the RSA and DSS
public-key digital signature schemes. Although there are some differences, the bottom line is that

from a practical point ofview these two public-key digital signature schemes are roughly the same

in strength and computational requirements.

In a recent study, Odlyzko [8] concludes that the 512 bit numbers are considered marginally safe

today while 1024 bit numbers are expected to be safe for a decade in both RSA and Diffie-

Hellman based systems. Because eventually the numbers may exceed 1024 bits in length, there is

now interest in elliptic curve public-key cryptosystems that were first proposed independently by

N. Koblitz [9] and V.S. Miller [10]. These are not new public-key systems but are basically the

Diffie-Hellman based systems using elliptic curves over finite fields. Elliptic curves over the finite

field GF(2n
) are the most interesting and specific implementations have been proposed that

provide a high degree of security with small numbers where n is less than 200 bits [11,12]. The

RSA system does not extend to these elliptic curve cryptosystems.

There is still some reluctance to use elliptic curve cryptosystems since they have not been

scrutinized as carefully as integer factorization (attack on RSA) and ordinary discrete logarithms

for GF(p) where “p” is a prime number (attack on conventional Diffie-Hellman and DSS systems).

CONVENTIONAL ENCRYPTION AND KEY DISTRIBUTION:

Because public-key algorithms are computationally intensive, in practice they are generally used

for creating digital signatures in electronic messages and for handling key distribution in systems

using symmetric encryption algorithms. Symmetric encryption algorithms are used primarily for

maintaining the privacy of information. The best known conventional encryption algorithm is the

Data Encryption Algorithm which is in NIST’s 1976 Data Encryption Standard (DES) [13]. DES
has been around for almost 15 years and now a replacement is being discussed by several

organizations. NIST has proposed the Clipper chip and the general concept of an Escrowed Key



System where the FBI has the capability (with a valid court order) to decrypt traffic using this

system. The banking standards group, ANSI, is currently considering an extension ofDES to

Triple-DES. IDEA (International Data Encryption Algorithm), an algorithm invented by

Professor James Massey and his students at the ETH in Zurich, has been used by Phil

Zimmermann in his Pretty Good Privacy (PGP) security software package that was distributed on

the Internet [14]. IDEA, however, is patented by ASCOM, a Swiss company that funded the

work by Massey and his students. Massey has recently developed a new conventional encryption

algorithm called SAFER which is not patented and is available license free [15].

Conventional encryption algorithms require a single secret key for both encryption and decryption

ofmessages. Before the invention ofpublic-key cryptography, key distribution required a trusted

secure channel. Traditionally this channel was a trusted person who installed secret keys into the

various encryption algorithms in a secure network.

With the use of public-key cryptography key distribution can be done electronically at much less

cost and risk than using trusted couriers. This requires the use of digital signatures and a

certification authority. In the following sections we describe how this public-key approach for

key distribution can be handled just as easily with the Diffie-Hellman based system as with RSA.

NOTATIONS:

The following are the notations we will use throughout this note.

{ } Braces indicate the Secure Hash Algorithm (SHA) which is required by the NIST
Digital Signature Standard (DSS) as input to the Digital Signature Algorithm

(DSA). Here (a, b} is the result when the SHA is applied to “a” concatenated

with “b.”

[ ] Brackets are for any function ofthe Diffie-Hellman shared secret number, Z, which

is used to create a conventional L bit secret key for a symmetric encryption

algorithm. Here [Z] may be, for example, the L least significant bits ofZ or

perhaps some hash ofZ which is L bits long.

IA This is Alice’s identification which is typically attached to any message sent by

Alice. It is generally a short identifier with no cryptographic elements in it.

CA This is a random number generated by Alice to be used in a challenge response

protocol.

SA{ } SA {a, b) is Alice’s DSS signature on the hashed version ofthe message which is

“a” concatenated with “b.” There will be several protocols presented here where

the DSS signature is sent without the message for which the signature is applied.

Here Alice uses her permanent private number XA to create her DSS signatures.



SA( ) SA(a, b) is the concatenation of“a” and “b” followed by Alice’s DSS signature on

message “a, b.” Here again Alice uses her permanent private number XA to create

her DSS signatures. Note that SA(a, b) = a, b, SA{a, b}.

CertA This is Alice’s certificate which contains Alice’s name, Alice’s privileges (and

possibly other information), her permanent public number Y* and the trusted

Certification Authority’s DSS signature for this personal data.

Ek( ) This is encryption using a symmetric cryptosystem (such as DES) with key K.

a©b This is the bit-by-bit modulo-2 addition oftwo equal length binary sequences “a”

and “b
”

THE DIFFIE-HELLMAN KEY EXCHANGE WITH DSS:

For the Digital Signature Standard (DSS) we have common system parameters “g”, “q”, and “p”

where “p” is the modulus prime number. For this DSS system Alice has a permanent private

number XA and the corresponding permanent public number YA given by

Ya = g
X/t mod p .

Bob also has his own permanent private number XB and corresponding permanent public number

Yb given by

Yb = g** mod P •

We assume that both Alice and Bob have certificates issued by a certification authority that

includes their public numbers. Denote these certificates as CertA and CertB where YA and YB are

Alice and Bob’s permanent public numbers that are included in their certificates. Thus when Alice

receives Bob’s certificate, CertB ,
she knows with certainty that YB is Bob’s public number. These

do not change as long as the certificates are valid.

Assume throughout this note that Alice and Bob have each other’s certificates. Thus Alice knows

with certainty Bob’s permanent public number YB and Bob similarly knows Alice’s permanent

public number Y v Certificates could be exchanged prior to a protocol or obtained from a

directory service. If certificates are not distributed prior to the protocols given here then they

must be included in the initial exchanges ofthese protocols.



The Standard DifTie-Hellman Key Exchange

In the conventional Diffie-Hellman key exchange Alice and Bob can generate a shared secret key

by conducting the following transaction:

1.

Alice randomly generates a secret private number RA and computes the corresponding

public numberWA given by

mod p

while Bob randomly generates his own secret private number Rg and computes his

corresponding public numberWB by

WB = g
R

B

mod p .

2. When Alice and Bob want to establish a key exchange they first exchange their public

numbers where Alice sendsWA to Bob and Bob sendsWB to Alice.

WA

Alice Bob
WB

3 . Alice computes the common shared secret number Z by using only Bob’s public number

WB and her secret number RA by

Z = W^A mod p .

Bob is able to compute the same shared secret number Z by using Alice’s public number

WA and his own secret number Rg by

Z = W^B
mod p .

Note that in each new transaction between Alice and Bob new private and public numbers can be

used with the resulting newly computed common shared secret number Z. This type of



conventional Diffie-Hellman key exchange works well in many end-to-end secure communication

applications. It weakness is that there is no authentication ofthe public numbers that are

exchanged. For example, how does Alice know thatWB is truly Bob’s public number?

Challenge Response Authentication

Before continuing with authenticated Diffie-Hellman key exchanges we first exam how Alice and

Bob can authenticate each other. For mutual authentication the obvious challenge response

protocol using DSS is as follows:

1 . Alice generates a random number CA and sends this to Bob.

CA
Alice 4 Bob

2. Bob generates a random number Cg and sends to Alice the DSS signed message Cg,

SbIC* Cg}.

Cb> Sb{Ca, Ce}

Alice Bob

3. Alice sends back to Bob the DSS signature SA{CA, Cg}.

Sa(Q\> Cb}

Alice Bob

Note that Eve could intercept Alice’s second transmission to Bob and replace it with her DSS
signed message Se{Ca, Cg}. Bob would then believe that it is Eve that is at the other end ofthe

link instead of Alice. Alice, on the other hand, knows that she is linked to Bob and conducts the

session without knowing that Bob thinks she is Eve.

This problem can be avoided by linking some identification to each transmission in the protocol.

For example in Step 1 Alice sends IA along with CA . In Step 2 Bob can send the DSS signed

message IB, Cg, SB{IA, CA,
IB, C^} to Alice and in Step 3 Alice can send the DSS signed message

Ia, Sa{Ia, Ca,
Ib ,

Cg} to Bob. In this case Eve could replace IE for IA in both of Alice’s

transmissions to Bob and also use her own DSS signature on the second transmission to Bob.

Although Bob would be deceived into believing he is in communication with Eve, Alice would

know that Eve is doing this and terminate this session.

This modified mutual authentication protocol with the normal practice of sending an identification

with each transmission is as follows:



1 . Alice generates a random number CA and sends this to Bob.

IA, CA
Alice Bob

2. Bob generates a random number Cg and sends to Alice the DSS signed message IB , Cg,

Sb{^a» Ca, IB ,
Cg}.

Ib> Cg, Sgll^ Ca, Ib, Cg}

Alice Bob

3. Alice sends back to Bob the DSS signature Sa{Ia, Ca, Ib, Cg}.

Iaj Sa{Ia, Ca, IB ,
Cg}

Alice Bob

In the remainder of this note we always assume that an identification ofthe sender is attach to any

message.

Authenticated Diffie-Hellman Key Exchanges

If Alice and Bob have permanent public numbers that are certified then they can conduct the

Diffie-Hellman scheme with authenticated public numbers. The problem here is that the

computed shared secret number would always be the same as long as the permanent public

numbers are unchanged. In general it is not a good idea to use the same secret numbers too long.

Method #1:

One way to get around this is to generate new secret and public numbers for this conventional

Diffie-Hellman key exchange but send the public numbers signed with DSS signatures. This

problem of authenticated key exchange has been examined by Diffie, Van Oorschot, and Wiener

[16] who recommends the following authenticated key exchange protocol:

1 . Alice randomly generates a secret private number RA and computes the corresponding

public numberWA which she sends to Bob.

Ia, Wa

Alice Bob

2. Bob randomly generates a secret private number Rg and computes the corresponding

public numberWB . He computes the shared secret number Z from Alice’s public number

WA and his private number Rg. He then sends to AliceWB together with Ek(Sb {Ia, Wa,



IB,WB }) where K = [Z],

IB,WBi
EK(Sg{IA,WA,Ig,Wg})

Alice Bob

3. Alice computes Z from Bob’s public numberWB and her secret private number Ra . She

then obtains the key K = [Z] and next decrypts and verifies Bob’s signature on the hashed

versions ofthe certificates and public numbersWA andWB . She also sends to Bob

Ek(Sa{Ia, W* Ib ,
Wb }).

Ia, Ek(Sa{IAj Wa,
Ib ,
Wb }).

Alice -fr-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* Bob

4. Bob then uses the key K and decrypts this message and verifies Alice’s signature on the

hashed certificates and public numbers.

The use ofthe shared secret number in this protocol is necessary to prevent a person in the

middle, say Eve, causing Bob to believe he is conducting the DH key exchange with her rather

than Alice [16], There are many other ways to securely bind the shared secret number Z to the

signed public numbersWA andWB . We consider another approach next.

Method #2:

1. Alice randomly generates a secret private number RA and computes the corresponding

public numberWA which she sends to Bob.

IA,WA

Alice -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* Bob

2. Bob randomly generates a secret private number Re and computes the corresponding

public numberWB . He also computes the shared secret number Z fromWA and Re .

Next he randomly generates a random L bit sequence Cg and computes [Z] © Cg . He
then sends to AliceWB,

[Z] © Cb, Sb {Ia,
Wa,

Ib,
Wb, Cb}.

IB,
WB ,

[Z] © Cb, Sb {Ia,
Wa,

IB,
WB ,

Cg}

Alice Bob

3. Alice computes the shared secret number Z from Bob’s public numberWB and her secret

private number RA . She can then obtain Cg and verify the signature on the SHA of IA,
WA,

Ib> Wb ,
Cg.

Next she then randomly generates a random bit sequence CA and computes [Z] © CA and

sends to Bob [Z] © CA,
Wa,

Ib ,
Wb ,

Ca }.



Ia, [Z] © C* SA{IAJ WA ,IB,WB, CA}

Alice Bob

4. Bob uses Z to find CA and can then verify Alice’s signature on the SHA of Ia, WA,
IB ,
WB ,

cA .

Note that since Cg is a random bit sequence, [Z] © Cg is a bit level “one time pad” encryption of

[Z] which is known to be absolutely secure. The key issue here is the amount of information

about Cg that is revealed in Sb {Ia, Wa,
Ib, Wb, Cg}. This also applies to how much Sa{Ia> WA,

IB ,

WB, CA} reveals about CA which is used to encrypt Z in [Z] © CA .

This second method has the advantage that it does not use a particular symmetric key encryption

algorithm in the protocol except for the bit level one time pad which is very simple and secure.

A Store and Forward Version of Diffie-Hellman

In the conventional Diffie-Hellman key exchange we assume that Alice and Bob are engaged in a

two way protocol. Suppose Alice wants to send an encrypted message by e-mail when Bob is not

available to conduct an authenticated Diffie-Hellman key exchange. We describe a store and

forward Diffie-Hellman scheme which is a natural extension ofthe original scheme for key

agreement.

Assume that Alice has Bob’s certificate, CertB,
and therefore has his authenticated permanent

public number YB . Alice can generate a random secret number RA and the corresponding public

numberWA and also generate a shared secret key Z by

Z = Y%
a mod p .

She can then use the shared secret number Z to make an encryption key K = [Z] and encrypt

(using DES for example) her DSS signed messageM to get the encrypted message EK(M, SA{M,

Ia, WA }). She can then send to Bob together with this encrypted message, her session public

numberWA . This can be sent in a store and forward manner system.

IA, Ek(M, Sa{M, Ia, Wa})

Alice Bob

Later when Bob picks up this message he can compute the shared secret number by

Z = W^B mod p



where XB is Bob’s permanent secret number. K = [Z] is the message encryption key that is then

used to decrypt the Alice’s signed message from E^M, SA{M, IA,
WA}). Here the encryption of

Sa{M, Ia, Wa ) bindsWA to Alice and the shared secret key.

Key Escrow For File Encryption

Another form ofthe Diffie-Hellman key exchange can be used with Key Escrow Services.

Suppose that Bob is a trusted Key Escrow Service with the certified public number YB that is

known to Alice. Alice may want to encrypt her files but also wants to allow the Key Escrow

Service to generate her file encryption key in the event that she misplaces it. Alice can generate a

private random number RA and encrypt her files with a key K = [Z] where Z is obtained from

Z = Y%
A mod p .

To allow the Key Escrow Service to generate her file key if she misplaces it Alice generates the

public number

WA = g
Rji mod p

which she must send to Bob, the Key Escrow Service. This sending ofWA to Bob must be done

so that Bob knows that WA belongs to Alice.

If Alice were to send Sa(Wa) to Bob then Eve could intercept this and send to Bob SgCW^. Bob

would then believe that WA belongs to Eve and later Eve could claim she lost her file encryption

key and ask Bob to generate it for her. Thus Eve would obtain Alice’s file encryption key.

One way to avoid this problem is for Alice to send to Bob her public numberWA,
IA,

and

Ek(Sa {Ia> Wa}) thus binding her public number with her identity and the shared secret number.

The encryption key used here might be based on another hash of the shared secret number Z that

is different from the hash ofZ used to encrypt her file.

I* WA, Ek(Sa{Ia, Wa})

Alice Bob

The Key Escrow Service, Bob, can send back acknowledgment of the reception of this public

number by sending back S^Ia, IB ,
WA }.

Ib, Ib ,
Wa}

Alice Bob



An approach that is independent ofthe symmetric encryption algorithm EK( ) is for Alice to

randomly generate a binary sequence CA and send to the Key Escrow Service IA,
WA,

CA © [Z],

Sa{Ia,Wa,Ca }.

I* W* CA © [Z], CA }

Alice Bob

The Key Escrow Service can send to Alice the same acknowledgment as given above.

Again the security ofthis rests on the difficulty of obtaining Z from this transmission from Alice to

the Key Escrow Service which in turn depends on how much Alice’s DSS signature on the SHA
of IA, Wa, Ca will reveal anything about CA.

Key Escrow For Communication Encryption

Next suppose we want a Key Escrow System for all of Alice’s Diffie-Hellman key exchange in a

communication session with another person.

Following the same procedure outlined in the above Key Escrow for File Encryption, Alice now
has the secret number Z which the Key Escrow Service can also compute. Suppose that the Key

Escrow Service uses Z to next compute a public number

PA = g
Z mod p

which it then signs as SB(IA, Ib, Pa) and returns to Alice.

Ib, Sb(Ia, Ib , Pa)

Alice Bob

Note that there is no exchange of secret numbers between Alice and the Key Escrow Service for

this Key Escrow System.

Alice now uses PA as the her public number in an authenticated Diffie-Hellman key exchange with

anyone to establish secure communications. Here Alice would send Sb(Ia, Ib, Pa) in place ofPA
alone in the usual authenticated Diffie-Hellman key exchange described earlier. Thus anyone can

observe the exchange of public numbers and verify that the exchanged public numbers will result

in a shared key that is escrowed in the Key Escrow Service that is identified.

Note that by observing the Diffie-Hellman key exchange between Alice and anyone else, the Key
Escrow Service will be identified and the DSS signature of this service will be attached to the



public number of Alice. If this is not the case then it will also be clear that this key exchange is

not done according to the protocol established for the Escrowed Key System.

As suggested by S. Micali [17], we can use several Key Escrow Services (KESs) where all or

some subset ofthese KESs will be needed to recover a key used in the Diffie-Hellman key

exchange. Suppose there are L KESs. Assume Alice conducts the above protocol with each of

the L KESs. For example, she randomly generates L independent private numbers Rls R2, ..., Rl
and computes corresponding public numbersW1} W2, ..., WL . With R* andWk Alice conducts the

above key escrow exchange with the kth KES to obtain a signed public number Pk for which she

has the corresponding shared private number Z*. This KES returns to Alice the signed public

number S^a, Ik, PJ where

P
k = g

Zk mod p .

For the Diffie-Hellman key exchange Alice then uses the private number

Z = Zj + Z2 + ... + Zl

and the corresponding public number

PA = g
z mod p = P

X
P

2
...PL mod p.

In the Diffie-Hellman key exchange using PA,
Alice must sent all the signed public numbers ofthe

L KESs in place ofPA .

To recover the shared secret number in the Diffie-Hellman key exchange, one would need to

obtain the shared secret number that Alice has with each ofthe L KESs.

Another option might be that Alice can choose any ofthe 2L-1 non-trivial subsets ofthe public

numbers P
l5
P2, ..., PL and use only their products to form a public number for a particular key

exchange. She would then send the corresponding subset ofthe public numbers signed by the

KESs that are used.

Key Exchange for Broadcast Applications

Suppose Alice wants to send the same messageM encrypted to many people. She can do this by

generating a secret broadcast key K for the encrypted message EK(M). If she wants to send this

same encrypted message to L people with fixed public numbers Yls Y2, ..., YL (which are known

to Alice because she has their certificates) she can use a form of the “Store and Forward” version

ofDiffie-Hellman many times.



First Alice randomly generates a secret private number RA and computes the corresponding public

numberWA . For the jth person she can compute the shared secret key

Z
j
- Y*

A mod p

and use this shared key to make as a secret master key K(j) = [Z] to encrypt the broadcast key K
as Ej^tK). She can do this with each ofthe L intended receivers ofthis encrypted broadcast

message.

Alice can broadcastWA and ^(M) ifthe receivers do not need to authenticate the source of this

broadcast message. Otherwise Alice would broadcast Ek(M, Sa{M, Ia,
Wa}) with IA andWA . To

the jth receiver she can also send separately the encrypted key E^CK),

Note that Alice can be sending a continuously encrypted signal such as a pay TV channel that is

encrypted by the secret broadcast key K. The jth subscriber that has paid a fee can then get the

secret key K by receiving E^CK) from Alice.

SUMMARY:

The important practical applications of public-key cryptography are for digital signatures in

electronic messages and for key distribution in conventional encryption systems that maintain

privacy in secure networks. For these applications we have shown that the public-key example

introduced by Diffie and Heilman and the extension of this to the Digital Signature Standard can

perform the same functions as the RSA public-key system. Although there are some detail

differences, in practical terms there is little difference in performance between the two systems.

The Diffie-Hellman based systems can be used in place ofRSA in any application requiring

public-key cryptography.
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ALTERNATIVES TO RSA USING DIFFIE-HELLMAN WITH DSS
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ABSTRACT:

Many vendors who need security for their networking applications often assume that RSA is the

only public-key technique available. Just as secure and easier to use than RSA are the techniques

based on extensions to the original public-key paper by Diffie and Heilman [1], In this note we
describe the various applications of public-key cryptography and show how these Diffie-Hellman

(DH) based techniques perform the same functions as RSA.

INTRODUCTION:

In 1976, Diffie and Heilman [1] started an explosion of open research in cryptology when they

first introduced the notion of public-key cryptography which allows for new electronic means to

handle key distribution in conventional cryptographic systems and for digital signatures in

electronic messages. In this original paper Diffie and Heilman gave a limited example of a public-

key system which is known today as the Diffie-Hellman key exchange. Later in 1978 Rivest,

Shamir, and Adleman [2] gave a complete example of a public-key system that is popularly known

as RSA. This RSA system can perform both key distribution and digital signature functions.

RSA can also be used for encryption but here it has no practical advantages over conventional

encryption techniques which are generally much faster.

It turns out that the original example given by Diffie and Heilman had the elements of a complete

public-key system. This was discovered by El Gamal [3] who added the digital signature feature

to the original Diffie-Hellman key exchange ideas. In 1994, the National Institute of Standards

and Technology (NIST) adopted the Digital Signature Standard (DSS) based on a variation of

this El Gamal digital signature [4], Thus the Diffie-Hellman key exchange together with its

extension to digital signatures in the form ofDSS can do the same public-key functions that RSA
can perform.

We first present a general discussion ofthe public-key method for creating digital signatures and

the use of certificates. This is followed by a general discussion ofthe key distribution problem in

conventional cryptographic systems. The remaining sections describe how the Diffie-Hellman key

exchange with DSS can accomplish all the same functions as RSA in all the important applications

of public-key cryptography.



DIGITAL SIGNATURES AND CERTIFICATES:

With both RSA and DSS, a person’s digital signature is based on a unique pair of numbers; one

that is private and another that is public. Although mathematically related, knowing a person’s

public number does not reveal the corresponding private number. Alice, for example, can use her

private number to create a digital signature attached to her electronic message. Later another

person, say Bob, can easily authenticate Alice’s digital signature by only using Alice’s public

number. Bob can also verify the integrity ofthe message that Alice signed. As long as Alice

keeps her private number secret, nobody can counterfeit her digital signatures while anyone can

both authenticate her digital signatures and verify the integrity of her signed messages by using

only her public number.

To make practical use of public-key digital signatures there needs to be established a trusted

certification authority which also has a private number and public number. It is assumed that

everyone in the system has knowledge ofthe public number of the certification authority. Thus

everyone can verify the digital signatures and the integrity of any signed message ofthe

certification authority.

Alice must first identify herselfto the certification authority and submit her public number to be

certified. Once the certification authority is satisfied it has properly identified Alice, it can create

a message that consists of Alice’s data (it may include, for example, her name, address, social

security number, unique privileges, time of expiration, and her public number) which is then

digitally signed by the certification authority using its private number. This electronic message

that is signed by the certification authority is Alice’s certificate. It is assumed that everyone in the

system obtains such a unique personal certificate from the certification authority. It is also

assumed that everyone in the system can verify the integrity ofthe data in any certificate issued by

the certification authority.

The United States Postal Service will be offering the first government certification authority in the

summer of 1996. A complete network of such trusted certification authorities will be needed for

widespread use of digital signatures. The government’s planned system of certification authorities

is called the Public-Key Infrastructure (PKI).

Once Alice has her certificate, she can attach it to her signed messages. To authenticate Alice’s

signature. Bob can first authenticate her certificate and recover Alice’s public number. He then

uses what he knows is Alice’s public number to authenticate her digital signature and verify the

integrity ofthe message she signed.



CRYPTOGRAPHIC STRENGTHS OF RSA AND DIFFIE-HELLMAN BASED
SYSTEMS:

The cryptographic strength ofthese public-key systems depend on how difficult it is for anyone to

compute a person’s private number given only the person’s corresponding public number. For

RSA this is based on the difficultly of finding the prime factors of a large integer while the Diffie-

Hellman based systems depend on the difficulty ofcomputing discrete logarithms in a finite field

generated by a large prime number. Both ofthese are well known “hard to solve” mathematical

problems. Although the discrete logarithm problem is believed to be more difficult to solve than

the factoring problem, in practical terms the differences are not important [5,6,7].

In terms of ease of computations, there is also not much of a difference between the Diffie-

Hellman based systems and RSA. Depending on the circumstances, there may be a computational

advantage with one method over the other but with today’s high speed processors and custom

chips these differences are not significant for numbers from 512 bits to 1024 bits in length.

Debates have been going for some time comparing various properties ofthe RSA and DSS
public-key digital signature schemes. Although there are some differences, the bottom line is that

from a practical point ofview these two public-key digital signature schemes are roughly the same

in strength and computational requirements.

In a recent study, Odlyzko [8] concludes that the 512 bit numbers are considered marginally safe

today while 1024 bit numbers are expected to be safe for a decade in both RSA and Diffie-

Hellman based systems. Because eventually the numbers may exceed 1024 bits in length, there is

now interest in elliptic curve public-key cryptosystems that were first proposed independently by

N. Koblitz [9] and V.S. Miller [10], These are not new public-key systems but are basically the

Diffie-Hellman based systems using elliptic curves over finite fields. Elliptic curves over the finite

field GF(2") are the most interesting and specific implementations have been proposed that

provide a high degree of security with small numbers where n is less than 200 bits [11,12]. The

RSA system does not extend to these elliptic curve cryptosystems.

There is still some reluctance to use elliptic curve cryptosystems since they have not been

scrutinized as carefully as integer factorization (attack on RSA) and ordinary discrete logarithms

for GF(p) where “p” is a prime number (attack on conventional Diffie-Hellman and DSS systems).

CONVENTIONAL ENCRYPTION AND KEY DISTRIBUTION:

Because public-key algorithms are computationally intensive, in practice they are generally used

for creating digital signatures in electronic messages and for handling key distribution in systems

using symmetric encryption algorithms. Symmetric encryption algorithms are used primarily for

maintaining the privacy of information. The best known conventional encryption algorithm is the

Data Encryption Algorithm which is in NIST’s 1976 Data Encryption Standard (DES) [13]. DES
has been around for almost 15 years and now a replacement is being discussed by several

organizations. NIST has proposed the Clipper chip and the general concept of an Escrowed Key



System where the FBI has the capability (with a valid court order) to decrypt traffic using this

system. The banking standards group, ANSI, is currently considering an extension ofDBS to

Triple-DES. IDEA (International Data Encryption Algorithm), an algorithm invented by

Professor James Massey and his students at the ETH in Zurich, has been used by Phil

Zimmermann in his Pretty Good Privacy (PGP) security software package that was distributed on

the Internet [14]. IDEA, however, is patented by ASCOM, a Swiss company that funded the

work by Massey and his students. Massey has recently developed a new conventional encryption

algorithm called SAFER which is not patented and is available license free [15].

Conventional encryption algorithms require a single secret key for both encryption and decryption

of messages. Before the invention of public-key cryptography, key distribution required a trusted

secure channel. Traditionally this channel was a trusted person who installed secret keys into the

various encryption algorithms in a secure network.

With the use of public-key cryptography key distribution can be done electronically at much less

cost and risk than using trusted couriers. This requires the use of digital signatures and a

certification authority. In the following sections we describe how this public-key approach for

key distribution can be handled just as easily with the Diffie-Hellman based system as with RSA.

NOTATIONS:

The following are the notations we will use throughout this note.

{ } Braces indicate the Secure Hash Algorithm (SHA) which is required by the NIST
Digital Signature Standard (DSS) as input to the Digital Signature Algorithm

(DSA). Here {a, b} is the result when the SHA is applied to “a” concatenated

with “b.”

[ ] Brackets are for any function ofthe Diffie-Hellman shared secret number, Z, which

is used to create a conventional L bit secret key for a symmetric encryption

algorithm. Here [Z] may be, for example, the L least significant bits ofZ or

perhaps some hash ofZ which is L bits long.

IA This is Alice’s identification which is typically attached to any message sent by

Alice. It is generally a short identifier with no cryptographic elements in it.

CA This is a random number generated by Alice to be used in a challenge response

protocol.

SA { } SA {a, b} is Alice’s DSS signature on the hashed version of the message which is

“a” concatenated with “b.” There will be several protocols presented here where

the DSS signature is sent without the message for which the signature is applied.

Here Alice uses her permanent private number XA to create her DSS signatures.



SA( ) SA(a, b) is the concatenation of“a” and “b” followed by Alice’s DSS signature on

message “a, b.” Here again Alice uses her permanent private number XA to create

her DSS signatures. Note that SA(a, b) = a, b, SA {a, b}.

CertA This is Alice’s certificate which contains Alice’s name, Alice’s privileges (and

possibly other information), her permanent public number YA,
and the trusted

Certification Authority’s DSS signature for this personal data.

Ek( ) This is encryption using a symmetric cryptosystem (such as DES) with key K.

a©b This is the bit-by-bit modulo-2 addition oftwo equal length binary sequences “a”

and “b.”

THE DEFFIE-HELLMAN KEY EXCHANGE WITH DSS:

For the Digital Signature Standard (DSS) we have common system parameters “g”, “q”, and “p”

where “p” is the modulus prime number. For this DSS system Alice has a permanent private

number XA and the corresponding permanent public number YA given by

Ya = g*A mod p .

Bob also has his own permanent private number XB and corresponding permanent public number

Yb given by

Yb = g
Xe mod p .

We assume that both Alice and Bob have certificates issued by a certification authority that

includes their public numbers. Denote these certificates as CertA and CertB where YA and YB are

Alice and Bob’s permanent public numbers that are included in their certificates. Thus when Alice

receives Bob’s certificate, CertB ,
she knows with certainty that YB is Bob’s public number. These

do not change as long as the certificates are valid.

Assume throughout this note that Alice and Bob have each other’s certificates. Thus Alice knows

with certainty Bob’s permanent public number YB and Bob similarly knows Alice’s permanent

public number Y v Certificates could be exchanged prior to a protocol or obtained from a

directory service. If certificates are not distributed prior to the protocols given here then they

must be included in the initial exchanges of these protocols.



The Standard Diffle-Hellman Key Exchange

In the conventional Diffie-Hellman key exchange Alice and Bob can generate a shared secret key

by conducting the following transaction:

1 . Alice randomly generates a secret private number RA and computes the corresponding

public number WA given by

WA = g
R* mod p

while Bob randomly generates his own secret private number Rg and computes his

corresponding public number WB by

WB = g
R° mod p .

2. When Alice and Bob want to establish a key exchange they first exchange their public

numbers where Alice sends WA to Bob and Bob sendsWB to Alice.

WA

Alice Bob
WB

3. Alice computes the common shared secret number Z by using only Bob’s public number

WB and her secret number RA by

Z = W^A mod p .

Bob is able to compute the same shared secret number Z by using Alice’s public number

WA and his own secret number Rg by

Z = W^B
mod p .

Note that in each new transaction between Alice and Bob new private and public numbers can be

used with the resulting newly computed common shared secret number Z. This type of



conventional Diffie-Hellman key exchange works well in many end-to-end secure communication

applications. It weakness is that there is no authentication of the public numbers that are

exchanged. For example, how does Alice know that WB is truly Bob’s public number?

Challenge Response Authentication

Before continuing with authenticated Diffie-Hellman key exchanges we first exam how Alice and

Bob can authenticate each other. For mutual authentication the obvious challenge response

protocol using DSS is as follows:

1. Alice generates a random number CA and sends this to Bob.

CA

Alice Bob

2. Bob generates a random number CB and sends to Alice the DSS signed message CB,

Sb(Ca> Cb }.

Cb> sb {ca, Cb }

Alice Bob

3.

Alice sends back to Bob the DSS signature SA{CA, CB }.

Sa{Ca,

Alice Bob

Note that Eve could intercept Alice’s second transmission to Bob and replace it with her DSS
signed message SE{CA, CB }. Bob would then believe that it is Eve that is at the other end of the

link instead of Alice. Alice, on the other hand, knows that she is linked to Bob and conducts the

session without knowing that Bob thinks she is Eve.

This problem can be avoided by linking some identification to each transmission in the protocol.

For example in Step 1 Alice sends IA along with CA . In Step 2 Bob can send the DSS signed

message IB ,
CB ,

SB {IA, CA,
IB, CB } to Alice and in Step 3 Alice can send the DSS signed message

IA,
SA {IA, CA, IB , CB } to Bob. In this case Eve could replace IE for IA in both of Alice’s

transmissions to Bob and also use her own DSS signature on the second transmission to Bob.

Although Bob would be deceived into believing he is in communication with Eve, Alice would

know that Eve is doing this and terminate this session.

This modified mutual authentication protocol with the normal practice of sending an identification

with each transmission is as follows:



1 . Alice generates a random number CA and sends this to Bob.

IA, ca

Alice Bob

2. Bob generates a random number CB and sends to Alice the DSS signed message IB , Cb,

Sb {Ia, Ca, Ib, Cb }.

IB> Sb {Ia,
Ca,

Ib, C^}

Alice Bob

3. Alice sends back to Bob the DSS signature SA {IA,
CA, IB,

CB }.

Ia> Sa {Ia, Ca,
Ib, Cb }

Alice Bob

In the remainder of this note we always assume that an identification ofthe sender is attach to any

message.

Authenticated Diffie-Hellman Key Exchanges

If Alice and Bob have permanent public numbers that are certified then they can conduct the

Diffie-Hellman scheme with authenticated public numbers. The problem here is that the

computed shared secret number would always be the same as long as the permanent public

numbers are unchanged. In general it is not a good idea to use the same secret numbers too long.

Method #1:

One way to get around this is to generate new secret and public numbers for this conventional

Diffie-Hellman key exchange but send the public numbers signed with DSS signatures. This

problem of authenticated key exchange has been examined by Diffie, Van Oorschot, and Wiener

[16] who recommends the following authenticated key exchange protocol:

1 . Alice randomly generates a secret private number RA and computes the corresponding

public numberWA which she sends to Bob.

IA,
WA

Alice Bob

2. Bob randomly generates a secret private number and computes the corresponding

public numberWB . He computes the shared secret number Z from Alice’s public number

WA and his private number Rg. He then sends to Alice WB together with E^S^Ia, Wa,



IB, WB }) where K = [Z],

IB,
W^S^I* WA,

IB ,
WB })

Alice Bob

3. Alice computes Z from Bob’s public numberWB and her secret private number RA . She

then obtains the key K = [Z] and next decrypts and verifies Bob’s signature on the hashed

versions of the certificates and public numbers WA and WB . She also sends to Bob

EkCSaU* Ib ,
Wb }).

Ia, Ek(Sa{IAj Wa, Ib,
Wb }).

Alice Bob

4. Bob then uses the key K and decrypts this message and verifies Alice’s signature on the

hashed certificates and public numbers.

The use of the shared secret number in this protocol is necessary to prevent a person in the

middle, say Eve, causing Bob to believe he is conducting the DH key exchange with her rather

than Alice [16]. There are many other ways to securely bind the shared secret number Z to the

signed public numbers WA and WB . We consider another approach next.

Method #2:

1 . Alice randomly generates a secret private number RA and computes the corresponding

public numberWA which she sends to Bob.

IA,
WA

Alice Bob

2. Bob randomly generates a secret private number Re and computes the corresponding

public numberWB . He also computes the shared secret number Z fromWA and Re .

Next he randomly generates a random L bit sequence CB and computes [Z] © CB . He
then sends to Alice WB ,

[Z] ® CB ,
SB {IA ,

WA,
IB,
WB, CB }.

Ib, Wb,
[Z] © C* Sb {Ia,

Wa ,
Ib,
Wb,

Cb }

Alice Bob

3. Alice computes the shared secret number Z from Bob’s public numberWB and her secret

private number RA . She can then obtain CB and verify the signature on the SHA of1^ WA,

IB>
WB» C^.

Next she then randomly generates a random bit sequence CA and computes [Z] ©CA and

sends to Bob [Z] © SaIIa, Wa,
Ib,
Wb, Ca }.



IA,[Z]©CA, SA {IA,
WA ,IB,

WB, CA }

Alice Bob

4. Bob uses Z to find CA and can then verify Alice’s signature on the SHA of IA,
WA,

IB,
WB ,

CA .

Note that since CB is a random bit sequence, [Z] © CB is a bit level “one time pad” encryption of

[Z] which is known to be absolutely secure. The key issue here is the amount of information

about CB that is revealed in SB {IA, Ib ,
Wb, Cb}. This also applies to how much SA{IA, WA,

IB,

WB,
CA } reveals about CA which is used to encrypt Z in [Z] © CA .

This second method has the advantage that it does not use a particular symmetric key encryption

algorithm in the protocol except for the bit level one time pad which is very simple and secure.

A Store and Forward Version of Diflle-Hellman

In the conventional Diffie-Hellman key exchange we assume that Alice and Bob are engaged in a

two way protocol. Suppose Alice wants to send an encrypted message by e-mail when Bob is not

available to conduct an authenticated Diffie-Hellman key exchange. We describe a store and

forward Diffie-Hellman scheme which is a natural extension ofthe original scheme for key

agreement.

Assume that Alice has Bob’s certificate, CertB, and therefore has his authenticated permanent

public number YB . Alice can generate a random secret number RA and the corresponding public

numberWA and also generate a shared secret key Z by

Z = Y^
A mod p .

She can then use the shared secret number Z to make an encryption key K = [Z] and encrypt

(using DES for example) her DSS signed message M to get the encrypted message EK(M, SA{M,

IA,
WA }). She can then send to Bob together with this encrypted message, her session public

numberWA . This can be sent in a store and forward manner system.

IA,
WA, Ek(M, Sa{M, Ia,

Wa})

Alice -I-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* Bob

Later when Bob picks up this message he can compute the shared secret number by

Z = W%‘ mod p



where XB is Bob’s permanent secret number. K = [Z] is the message encryption key that is then

used to decrypt the Alice’s signed message from ^(M, SA{M, IA,
WA}). Here the encryption of

Sa{M, Ia,
Wa } bindsWA to Alice and the shared secret key.

Key Escrow For File Encryption

Another form ofthe Diffie-Hellman key exchange can be used with Key Escrow Services.

Suppose that Bob is a trusted Key Escrow Service with the certified public number YB that is

known to Alice. Alice may want to encrypt her files but also wants to allow the Key Escrow

Service to generate her file encryption key in the event that she misplaces it. Alice can generate a

private random number RA and encrypt her files with a key K = [Z] where Z is obtained from

Z = Y^
A mod p .

To allow the Key Escrow Service to generate her file key if she misplaces it Alice generates the

public number

WA - g
R/t mod p

which she must send to Bob, the Key Escrow Service. This sending ofWA to Bob must be done

so that Bob knows thatWA belongs to Alice.

If Alice were to send SaCWa) to Bob then Eve could intercept this and send to Bob Se^a). Bob

would then believe that WA belongs to Eve and later Eve could claim she lost her file encryption

key and ask Bob to generate it for her. Thus Eve would obtain Alice’s file encryption key.

One way to avoid this problem is for Alice to send to Bob her public number WA,
IA,

and

Ek(Sa {Ia,
Wa}) thus binding her public number with her identity and the shared secret number.

The encryption key used here might be based on another hash of the shared secret number Z that

is different from the hash ofZ used to encrypt her file.

I* WA , Ek(Sa{Ia,
Wa})

Alice Bob

The Key Escrow Service, Bob, can send back acknowledgment of the reception of this public

number by sending back SB {IA,
IB,
WA }.

I* SB {IA,
IB ,
WA }

Alice Bob



An approach that is independent ofthe symmetric encryption algorithm EK( ) is for Alice to

randomly generate a binary sequence CA and send to the Key Escrow Service IA,
WA, CA © [Z],

Sa{Ia,Wa,Ca}.

Ia,Wa,Ca ®[Z], sa{ia,Wa, Ca }

Alice Bob

The Key Escrow Service can send to Alice the same acknowledgment as given above.

Again the security of this rests on the difficulty of obtaining Z from this transmission from Alice to

the Key Escrow Service which in turn depends on how much Alice’s DSS signature on the SHA
of IA,

WA, CA will reveal anything about CA .

Key Escrow For Communication Encryption

Next suppose we want a Key Escrow System for all of Alice’s Diffie-Hellman key exchange in a

communication session with another person.

Following the same procedure outlined in the above Key Escrow for File Encryption, Alice now
has the secret number Z which the Key Escrow Service can also compute. Suppose that the Key

Escrow Service uses Z to next compute a public number

PA = g
z mod p

which it then signs as SB(IA,
IB, Pa) and returns to Alice.

Sb(Ia,
Ib , Pa)

Alice Bob

Note that there is no exchange of secret numbers between Alice and the Key Escrow Service for

this Key Escrow System.

Alice now uses PA as the her public number in an authenticated Diffie-Hellman key exchange with

anyone to establish secure communications. Here Alice would send Sb(Ia, Ib, Pa) in place ofPA
alone in the usual authenticated Diffie-Hellman key exchange described earlier. Thus anyone can

observe the exchange of public numbers and verify that the exchanged public numbers will result

in a shared key that is escrowed in the Key Escrow Service that is identified.

Note that by observing the Diffie-Hellman key exchange between Alice and anyone else, the Key
Escrow Service will be identified and the DSS signature of this service will be attached to the



public number of Alice. If this is not the case then it will also be clear that this key exchange is

not done according to the protocol established for the Escrowed Key System.

As suggested by S. Micali [17], we can use several Key Escrow Services (KESs) where all or

some subset of these KESs will be needed to recover a key used in the Diffie-Hellman key

exchange. Suppose there are L KESs. Assume Alice conducts the above protocol with each of

the L KESs. For example, she randomly generates L independent private numbers Rb R2, ..., Rl
and computes corresponding public numbers Wb W2, ..., WL . With R*. and Wk Alice conducts the

above key escrow exchange with the kth KES to obtain a signed public number Pk for which she

has the corresponding shared private number Zk . This KES returns to Alice the signed public

number S^^ Ik, PJ where

P
k = g

Zk mod p .

For the Diffie-Hellman key exchange Alice then uses the private number

Z = Z
x
+ Z2 + ... + Zl

and the corresponding public number

PA = g
z mod p = P

l
P

2
...P

L
mod p.

In the Diffie-Hellman key exchange using PA,
Alice must sent all the signed public numbers ofthe

L KESs in place ofPA .

To recover the shared secret number in the Diffie-Hellman key exchange, one would need to

obtain the shared secret number that Alice has with each ofthe L KESs.

Another option might be that Alice can choose any of the 2
L
-1 non-trivial subsets of the public

numbers Pb P2, ..., PL and use only their products to form a public number for a particular key

exchange. She would then send the corresponding subset of the public numbers signed by the

KESs that are used.

Key Exchange for Broadcast Applications

Suppose Alice wants to send the same message M encrypted to many people. She can do this by

generating a secret broadcast key K for the encrypted message EkCM). If she wants to send this

same encrypted message to L people with fixed public numbers Y,, Y2, ..., YL (which are known

to Alice because she has their certificates) she can use a form of the “Store and Forward” version

ofDiffie-Hellman many times.



First Alice randomly generates a secret private number RA and computes the corresponding public

numberWA . For the jth person she can compute the shared secret key

Z
y
= Y*

A mod p

and use this shared key to make as a secret master key K(j) = [Z] to encrypt the broadcast key K
as Ej^CK). She can do this with each of the L intended receivers ofthis encrypted broadcast

message.

Alice can broadcast WA and Ek(M) ifthe receivers do not need to authenticate the source of this

broadcast message. Otherwise Alice would broadcast ^(M, SA{M, IA,
WA}) with IA and WA . To

the jth receiver she can also send separately the encrypted key E^tX).

Note that Alice can be sending a continuously encrypted signal such as a pay TV channel that is

encrypted by the secret broadcast key K. The jth subscriber that has paid a fee can then get the

secret key K by receiving E
IC(j)

(K) from Alice.

SUMMARY:

The important practical applications of public-key cryptography are for digital signatures in

electronic messages and for key distribution in conventional encryption systems that maintain

privacy in secure networks. For these applications we have shown that the public-key example

introduced by Diffie and Heilman and the extension of this to the Digital Signature Standard can

perform the same functions as the RSA public-key system. Although there are some detail

differences, in practical terms there is little difference in performance between the two systems.

The Diffie-Hellman based systems can be used in place ofRSA in any application requiring

public-key cryptography.
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A single organization can theoretically mandate particular levels of

effort to safeguard private keys, limited only by budget. But
interoperation between organizations or interoperation involving
unaffiliated individuals will typically not be subject to a single policy.

The latest (1995) extensions to the X.509 recommendations can
provide cryptographic authentication of statements regarding safety of

private keys, but only for some of the possible risks and
circumstances.

It may be that for other risks and circumstances only a less-trusted
mechanism for communicating key storage strength is possible.

However, in all cases it is important that interchange of such
information does not increase the exposure to attack.

In all cases standardized syntax for communicating information
regarding strength of key storage is preferable for interoperation. Any
“security by obscurity” provided by disparate syntaxes is so weak as to

provide no security benefit (and not even significant competitive
advantage for vendors)

.

Who need Protection Information ?

When public key cryptography is being used to safeguard information,
certain data custodians may need to authorize access based not only
identity but based on the degree of certainty with which that identity

is protected.

A trust hierarchy of Certification Authorities is typically used by a data
custodian to ensure that a particular public key really corresponds to

the private key held by a particular individual. But the degree to

which that private key is protected might vary from a hardware token
with a built-in keypad for passwords down to a PKCS #5-encrypted key
stored in a public directory using as a password the name of the local

sports team.

One option for communicating the strength of private key storage, of

course, would be to include standards for such storage in the rules of a



particular certificate hierarchy. For interoperation between disparate
organizations, however, hierarchy rules are already overloaded, and
creating more rather than fewer hierarchies is generally viewed as not
a goal by those who seek interoperation between organizations.

Password Quality Issues

PKCS #5 password based encryption of private keys obviously brings
concerns about password quality. But even hardware tokens which
contain private keys typically require passwords to enable beneficial

use of the key, so password quality is also of concern in those cases.
Possible metrics for password quality include:

• Minimum total length
a

• Minimum number of runs of alphabetic characters
634-5789

• Minimum number of runs of numeric characters
qwerty.

• Minimum number of runs of punctuations characters
b2c3d4

• Longest run of identical characters
bbb-222

• Longest forward run of sequential characters
Lotus-123

• Longest reverse run of sequential characters
edcba-432

• Longest run of characters which is repeated
451/a/451

• Longest run of characters which is repeated in reverse
abc4/3cba

• Maximum password lifetime

When I mention enforced maximum password lifetime, it is because I

feel such measures actually decrease security for many locally held
private keys. Others may have different opinions. Thus, the
information which must be conveyed to a data custodian is not some
rating scale of private key protection quality but rather the details of



protection mechanisms so that a data custodian can make a decision
regarding whether a particular mechanism meets local standards.
Certainly there may be cases where a common set of criteria are
shared by multiple data custodians, but there will always be cases
where such agreement is not possible, so the raw data regarding
password storage must be available for use by data custodians who do
not find themselves in agreement with some common criteria.

Notably missing from the proposed list above are two elements
commonly used centralized password quality assessment.

• Password dictionary lookup

• Password history

Both of those are difficult to fully implement with hardware tokens,
and may be impossible for PKCS #5 storage of private keys.

Other Protection Mechanisms

Beyond the password used to unlock a private key for beneficial use,

there are other aspects of protection including:

• PKCS #5 token stored on removable media

• PKCS #5 token stored on non-removable media

• Hardware token using untrusted keyboard for password

• Hardware token with an integral password keypad

• Hardware token which commits amnesia after 10 bad tries

• Hardware token which commits amnesia after 2 bad tries

• Hardware token with fingerprint reader

• Hardware token with DNA tester

• Hardware token with DNA tester and audit trail

Particular classes of hardware tokens can be grouped for easy
decisionmaking (PCMCIA cards. Smart Diskettes, ISO Smart Cards),

but details of brands and models should also be available in cases
where a data custodian has particular rules regarding the degree of

physical hardening required, etc.



Applicability of X.509 Extensions

The 1995 X.509 revisions provide for arbitrary extensibility of public

key certificates, and as such can be used to convey cryptographically
signed information which is known to the CA at certificate issue time.

Depending on the exact manner in which hardware tokens are

deployed, it may be that a CA is in a position to certify that the private

key which corresponds is stored in a particular brand and model of

hardware token. In some of those cases it may even be possible for

the CA to make statements regarding password strength, because the
token is constructed to enforce particular rules of password strength.

For many private key protection situations, including virtually all those
associated with PKCS #5 protected keys, no such CA assurance is

possible.

Alternative “Soft” Mechanisms

It is conceivable that one might trust software which makes use of a
private key to report information regarding security of that key. This
would be vulnerable to a sophisticated attack by the keyholder, but
could usefully be employed to reject access from users who had
chosen an inadequate password or were storing PKCS #5 keys in a
fashion which was unacceptable to the data custodian.

Even with standardized representation of unsigned information
regarding private key security, generalized “underground” tools to

help end users misrepresent the degree of protection provided for

their public keys would be difficult to build since non-standardized
protocols for various applications would each have to be addressed
separately. The lack of direct usability of such tools by an attacker
should further dampen any tendency of such mechanisms to spread.

Avoiding Increased Exposure

Of course network transmission of information regarding the degree of

protection afforded a private key could be used as a tool by attackers in

some situations. One defense against that is to require the service to

which access will be attempted to transmit protection requirements
to would-be accessors before the access attempt. Then accessors
would not transmit information about key protection except in cases
where their key protection was adequate for the standards of the
object of their connection. They could, in fact, be programmed to

transmit only an indication of the standards being met, rather than a
full description of strengths. The resultant traffic thus becomes an
indication not of the strength of key storage being used, but the
minimum strength requirements being met.



One aspect in which mere minimum standard transmission is not
sufficient is in specification of exact manufacturers and models being
used. While transmitting such information may be important to some
data custodians, in the event a major vulnerability becomes known, the
information as to who is using particular models could be exploited by
attackers. Encrypting that information in transmissions is a possibility

but one can then descend a twisty path regarding less-than honorable
services which demand information for access and then provide the
information to attackers.

Standards are Crucial

With multiple certificate hierarchies, multiple private key storage
methods and multiple administrative domains, information about the
strength of private key storage can only be effectively shared with
standard expressions for the various aspects of private key protection.

X.509 V3 provides a framework for those aspects of private key
protection information which can be attested to by the Certification

Authority. For other aspects which can only be handled via "soft"

controls, there is no obvious framework, although a structure similar

to that used withing X.509 V3 might be reasonable, encapsulated
within particular applications in a protocol-specific fashion.
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Abstract

Implementations of security services in a global

network are strongly based on asymmetric

cryptography, which in turn depends on a public

key certification infrastructure. Its properties and

behaviour should prevent threats. Moreover, the

infrastructure should be efficiently manageable and

it should meet users' expectations regarding trust.

Flexible guidelines and procedures are given in this

paper, where all certification infrastructure

security issues are logically structured. Thus it is

easier to understand and to find possible solutions

in an easier way.

Keywords: certification infrastructure, CA structure

requirements, certificate management.

I. Introduction

Asymmetric cryptography is of immense

importance for provision of security services in a

global computer network. Proper binding between a

user and his/her public key is required for the

correct operation of protocols using public key

cryptography. A certificate [4] has been introduced

as an object providing that binding, which is issued

by a trusted authority, called Certification

Authority (CA). To serve the whole Internet

community, a global system of CAs has to be

established and it has to be supported by

appropriate database.

The aim of this paper is to address a logical

structure on all security issues of a certification

infrastructure and to identify their inter-

relationships. The starting point is prevention of

threats that are present in every security

infrastructure. Although the basic idea of a CA
structure (and a security infrastructure in general)

seemed clear and easy to implement, it turned out

to be a hard problem. It'

s

been already many years

since first standards [6, 7] in this field have been

launched, but the only operational certification

infrastructure has been established within

PASSWORD [8, 9], Even this one was not widely

used, as experiments with Privacy Enhanced Mail

(PEM, [7]) have shown that setting up a CA
infrastructure is a complex task. Prevention of

numerous threats is interleaved with policy and

both depend on technical matters. Besides,

corresponding standards include many implicit

assumptions.

In the following sections questions about

prevention of threats, management issues and user

expectations along with scalability will be

addressed. This paper presents a logical structure on

security issues related to a public key certification

infrastructure:

• naming is a separate issue;

• certification structure is a separate issue;

• key generation is a separate issue;

• creation and revocation of certificates is a

separate issue;

• distribution and storage is a separate issue

(database requirements);

• effective verification is a separate issue.

The other focus of this paper is based on the

policy issue as one of the most important things for

setting up a security infrastructure. Although policy

is not formally defined in standards [5, 6, 7], it is a

vital point for every certification infrastructure.

This topic will be covered in more details in the

following subsections.

And finally, solutions are tried to be found that

would not require complex certificate

modifications. Version 2 of certificate is a target of

the paper.

The paper is organised as follows. In section 2

current experiences with certification infrastructure

are described. Next, reference procedures and

requirements are defined along with new concepts.

In section 3 future work to be done in this field is

outlined. It is assumed that the reader is familiar

with concepts of public key cryptography, security

services, certificates, CAs and X.500 directory.

Detailed description of these concepts can be found

in [4, 5, 6, 7],

II. Elements of Security Infrastructure

Basic security infrastructure elements are:

• ordinary users and processes that communicate

over the global network;

• certification authorities or CAs, which are

trusted entities for issuing certificates;



• naming authorities, which manage the name

space and allocates unique names to users;

• global-timing authorities, which are responsible

for consistent and authenticated time services

through the global network;

• a public distributed database for storage and

distribution of new and revoked certificates.

These elements should be logically separated

into different categories, although a same physical

entity will often play roles of more than one logical

entity.

Generally, local procedures will be out of the

scope of this analysis. Therefore time authorities

and time-related objects will not be considered

(e.g., attributes for validity in certificates or time-

stamps in messages). These are required for local

verification operations and secure protocols. The

same holds true for digital signatures. Next,

procedures for getting sequences of certificates and

assuring their existence are also considered to be a

local matter.

The scope of this analysis is to provide a public

key certification infrastructure for proper operations

of local verification procedures and secure

protocols. The requirements (set of rules) will be

logically derived from a threats analysis and from
additional issues, which are logically structured

into different categories. However, these categories

are of equal importance, and they are partially

interrelated.

HA. Experiences With Existing CA
Structure

As already mentioned, a certification

infrastructure has been established within the

PASSWORD project. It has followed PEM system

requirements [7] with deployment of a European

X.500 system. The following problem has been

identified - assume that an organisational unit "a"

provides a CA service for an organisation "b" in a

country "c". The related certificates (and Certificate

Revocation Lists - CRLs [4]) have to be stored in

an entry "C=c;0=b;0U=a" in the Directory

Information Base (DIB [4]). If this part of the

Directory Information Tree (DIT [4]) is managed

by another organisation, conformance with PEM
requirements causes the following:

• Entity "a" is responsible for the data, which it

can not fully control within X.500 system,

because they are stored in a DSA, which is

effectively managed by another organisation.

Therefore every change of the data, required by

the CA, could be subject to delays and

effective service is not possible. Besides, there

exists a possibility of attacks by an organisation

that manages the DSA.

To solve the problem mentioned above, every

CA should be the master of its own entry. Would

managing its own DSA solve the problem? No -

because of the nature of the X.500 system, new

drawbacks are introduced:

• CA's DSA entry is still managed by an

organisation, which manages the name space

down to the level "C=c;0=b". Thus effective

management of a certificate of its own DSA is

not possible. Even worse, CRLs can not be

accurately managed.

• If a superior DSA does not support strong

authentication, it can not be issued a certificate

and a security chain is broken.

Unfortunately, it is impossible to avoid the first

problem mentioned above due to the nature of the

X.500 system. The second problem, however,

would be solved (and the first one mitigated), if the

CA could arbitrarily choose a superior DSA. In this

case also the requirement for a CA' s own DSA
would not be so strongly demanded. To achieve

this, a naming hierarchy should be separated from

a certification hierarchy.

It is a fact that X.500 infrastructure is already

widely established and that the certification

structure will be incorporated in the former one.

Therefore it could be thought that the organisations,

managing DSAs, should also take care for

certification service. Thus, an entity, which has got

a right to manage a part of a naming space,

automatically gains control over the corresponding

certification hierarchy. This is unacceptable, as

managing a global data base is completely different

from providing users with certificates. If nothing

else, this scheme is very inflexible.

Finally, who will provide a global TLCA (Top

Level Certification Authority [7]) service to the

whole Internet community? It is very likely that due

to strategic reasons every country will want to be

independent regarding this matter. Conclusion:

• There will be more TLCAs in the global

network.

• Certification hierarchy should be separated

from naming hierarchy, at least in case of CAs.

R.2.1

In the approach that follows, flexibility is

preserved, which is very important for Internet

growth. It is worth to mention that flexibility of

Internet had a strong influence on its evolution. For

example, by deployment of domain name system,

routing of e-mail is independent of naming



hierarchy and the latter is independent of physical

address space.

II.B. CA Structure Model Requirements

Basic CA requirements are the following:

1. Prevention of threats - a system has to be

resistant against possible attacks.

2. Trust - this means that a user expects to find

a sequence of certificates that are issued by

CAs that he/she trusts in a certain context.

3. Management:

• all the certificates and certificate revocation

lists (CRLs [6]) should be easily accessible;

• to be able to use the infrastructure a user

should have at least an initial information,

i.e., a public key of only one CA;

• the structure itself should be simple -

effective certificate issuing and CRL
management.

R.2.2

The reason for the first requirement is obvious.

The second requirement is based on a fact that a

user trusts those entities that he/she wants to trust,

and not those he/she is supposed to trust. The third

requirement is based again on the nature of human
reasoning - if getting certificates and their

verification is a complex and time consuming

process, nobody will use them.

II.B.l Trust issues

Despite the fact that a certificate basically

provides binding between an entity and a

corresponding public key, it is unrealistic to expect

that every user will have only one certificate for all

his/her activities. Certificates can be seen as an

analogy to an ordinary document and every person

has been issued more such documents in real life.

Thus certificates will enable the user to act

somehow on its basis in line with a certain policy,

determined by the issuer of certificates.

To assure users with various sequences of

certificates, a global CA structure has to be

hierarchical, where hierarchical means that only

certain CAs will have a right to issue certificates to

certain users. This is one issue of a security policy,

which can be informally defined as a set some of

rules. Therefore security policy actually dictates

every hierarchy and should be included as a field in

a certificate (e.g., by using issuerUniqueldentifier

and/or subjectUniqueldentifier ir. X.509(93)

certificate). It is not the intention of this paper to

introduce security policy with formal definitions

(see e.g. [10]), but to point out its importance.

This conclusion is stated below along with

additional requirements:

1. The global CA structure should be

hierarchical, where the hierarchy is defined

by a policy.

2. Users have to have unique names, which

describe their role(s), where naming is a

responsibility of a naming authority. This is

achieved with an introduction of unique

names (UN), consisting of unique basic

names (UBN) and unique aliased names

(UAN). As implied, UBN is the user' s basic

name - all other names are aliases and all of

them are unique.

3. All users have to be able to generate their

own key pair, where only the public

component is (physically) brought to a CA.

4. Users have to have entries in a global,

electronic and public database. A certificate

is effective once it is stored in a global,

public (electronic ), database.

5. The global public database system has to

support strong authentication and access

control.

6. A CA can revoke only those certificates that

were issued by this CA (CRLs must have

ISSUER attributes of the same value as

ISSUER fields in the sequence of certificates,

contained in the CRL).

7. A certificate may be issued only when a

prototype certificate with new public key is

submitted.

8. Any CA is allowed to sign another user or CA

if the latter conforms to the policy of this CA.

9. Every user has to have an access to the

global timing reference and every packet

should have a time stamp.

R.2.3

Unique names (UNs) are introduced to point out

the importance of treating naming as a separate

issue and to prevent implications that the rules are

intended for an X.500 environment only. Reasons

for the requirements above are:

• Requirement R.2.3. 1 - the reasons have

already been given at the beginning of this

subsection.

• Requirement R.2.3.2 - to prevent

identification ambiguities in a global name

space.

• Requirement R.2.3.3 - a secret key remains

secret only if a user generates it. As keys will

not be subject to frequent changes and as

nowadays everybody has enough processing

power at hands, this requirement is easy to

fulfil.

• Requirement R.2.3.4 - it is included to

prevent threats as described in subsection



II.B. 2. and to fulfil the third requirement of

R.2.2.

• Requirement R.2.3.5 - it is included to

prevent threats, so only a legitimate user can

modify his/her own entry, while others can

access it using read and/or compare

operations (in case of certificate this means

that the SUBJECT field must be the same as

entry' s unique name). Detailed reasons are

given in subsection II.B.2.

• Requirement R.2.3.6 - the reason is the third

requirement in R.2.2. Although every

hierarchically superior CA is in a position to

revoke any certificate below it by simply

revoking the first subordinated certificate, this

is not practical. Next, if the lowest-level

certificate has to be revoked, it could be put

on any CRL under the CA in question, which

is in charge for a certain policy. But this

would result in complicated CRL checks.

Instead of checking only CRL list at the

ISSUER, the whole branch of CRLs below the

top one would then have to be checked.

• Requirement R.2.3.7 - it is included to

prevent threats as it will be described in

subsection II.B. 2. Along with requirement

R.2.3.4 it makes possible issuing of new

certificates without a need for a user to

physically appear at a CA, except for the first

time.

• Requirement R.2.3.8 - it is a natural

consequence of R.2.3.1. Entities, which are

known directly, are trusted more than those,

which are known indirectly. Therefore

sequences of certificates needed for public key

verification should be as short as possible.

• Requirement R.2.3.9 - it is hard to prevent

reply without an incremental counter or time-

stamps, where time stamps are more general

solution. It is also hard to reconstruct

successful attacks without a time frame.

II.B.2. Prevention of threats

The basis for the issues given in this subsection

is taken from the threats analysis written by M. Roe

[8 ].

Loss of Confidentiality

Loss of confidentiality may occur:

a. when the user' s local key storage is

compromised;

b. when a private key is intercepted at

transmission between a User Agent and a

local storage unit;

c. when the key generation process is

compromised (bad keys are generated);

d. when a malicious CA disables security

mechanisms.

The prevention of the threats a, c and d above is

achieved, if the requirement R.2.3.3 in the

subsection II.B.l is met. Threat b is a local matter

and thus out of the scope of this paper.

Modification of Data

Possible threats are:

a. modification of certificate contents during

transmission;

b. modification of stored certificates;

c. modification of security attributes prior to being

packaged in a certificate (made by user,

attacker, or malicious CA).

Threat a is prevented by the nature of a

certificate (signature) itself. It is very easy to check

the digital signature, still it is computationally very

hard to forge it. The same holds true for threat b,

where R.2.3.4 additionally prevents this threat.

Regarding threat c, a user is able to modify only

his/her public or private key, which a CA would

immediately note because of R.2.3.7. An attack

during transmission is prevented by R.2.3.3. And
finally, malicious CA operation can be easily

detected by R.2.3.4. If the ISSUER field is forged

then this can be noted as the certificate is made
public via an electronic database and everybody

can check that the public component of a falsified

UN does not verify digital signature (the same

holds true for algorithm identifier fields). If the

subject field is forged, such certificate cannot be

entered into an appropriate UN entry of a global

database (R.2.3.5). If version and serial number

fields are forged then this is identified, as all the

certificates issued by a CA are publicly accessible

via an electronic database. Therefore automatic

checking procedures can be applied.

Masquerade

Masquerade occurs, when an entity pretends to

be a different entity:

a. masquerade of a user requesting a certificate,

b. masquerade of a CA issuing a certificate,

c. masquerade of a CA during cross-

certification.

Threat a is prevented by R.2.3.3, because a user

has to physically appear at a CA (at least for the

first time) and can be identified. Threat b is

prevented by R.2.3.4, as the digital signature can be

checked with a public key of an entity that a rogue

CA pretends to be. The same holds true for threat c.



False Repudiation

This occurs when one entity denies sending or

receiving information in one of the following cases:

a. repudiation by a user of having requested a

certificate,

b. repudiation by a user of having received a

secret key,

c. repudiation by a user of having requested the

revocation of a certificate,

d. repudiation by a CA of having issued a

certificate,

e. repudiation by a CA of having revoked a

certificate,

f. repudiation by a CA of having requested a

cross-certificate.

Threats a and f are prevented by R.2.3.5 - if the

user (CA) has not requested a certificate (cross-

certificate), he/she will not store it in the database.

Threat b is prevented by R.2.3.3. Regarding threat

c, assume that a private key has been compromised.

There will be definitely no reactions, as long as a

legitimate user does not recognise this fact. Then

the user simply sends an e-mail request to a CA and

asks for revocation. The CA is always in a position

to check the digital signature of the message. It is

very unlikely that such an action will be undertaken

by another person who is not entitled to use the

compromised private component. But if this person

sent a request, it would be even better - a CA could

again check the digital signature and revoke a

certificate. This way, further false use of a

compromised key is stopped. The legitimate user is

informed about this and generates another key pair.

Then the user encrypts a message with a CA' s

public key and sends a prototype certificate to the

CA(R.2.3.7). The CA signs the key and sends a

certificate back to the user, who puts it in a

directory. If the attacker also sends a prototype

certificate with another public key, the CA will

immediately recognise that two certificates are

issued for the same UN with different public keys

and would stop the process. If attacker does this

before a legitimate user, he/she will have to put it

in a database, which is very hard because of

R.2.3.4. He/she should also know the password and

the additional security attributes for the strong

authentication with a data processor.

And this is a very interesting feature of the

system that is compliant with requirements in this

paper. Namely, such a system is self-regenerative in

a sense that, when issuing a new certificate, a

physical contact between a CA and a user is

required only once, and that is when issuing

certificate for the first time. All subsequent

certificates can be issued over the network without

a needfor a physical contact.

Regarding threat d, repudiation by a CA of

having issued a certificate is hindered by a fact that

the certificate contains its UN and its digital

signature, which can be verified by CA' s public

key that is found in the CA'

s

entry in the database.

The same holds true for repudiation of revoking a

certificate, mentioned in threat e. The problem is,

however, when a CA does not revoke a certificate

according to the owner's request. To solve this

problem, user has to be provided with a proof of

delivery of his/her request to the CA.

Misuse of Privilege

Misuse of privilege means that a CA performs

actions it was trusted never to do in one of the

following cases:

a. a CA uses a user' s private key to forge

signatures,

b. a CA uses a user' s private key to decrypt

confidential information,

c. a CA uses incorrect certificates to subvert

security mechanism,

d. a CA uses incorrect CRL to cause denial of

service.

Threats a and b are prevented by R.2.3.3. Threat

c is prevented by R.2.3.4, which makes the results

of CA operations public and everybody is in a

position to check these results. The only problems

that occur in this case are time delays that are

shortened to the minimum due to the public

availability of results of CA' s operations. For

instance, incorrect certificates cannot be harmful,

as they are not effective until users put them in a

database; users are always in a position to verify the

certificate before storing them in the database.

Similar reasoning applies to d. As soon as a user

is informed about the fact that a CA has revoked

his/her certificate, he/she can insist on showing a

revocation request to a third party. As a CA is not

able to forge the digital signature (R.2.3.3), it has

no proof of a revocation request (R.2.3.7) and can

thus be charged. Time delays are certainly

introduced this way, but they can not be avoided.

Exceeding Authority

It occurs when CA performs unauthorised

actions:

a. a CA issues a certificate for a member of an

organisation over which it has no jurisdiction;

b. a CA revokes a certificate issued by another

authority over which it has no jurisdiction.



Threat a is prevented by R.2.3.8, and threat b by

R.2.3.6.

II.C. Database Requirements

To prevent masquerade, a requirement for a

database is straightforward:

• Every data processor has to have its own

certificate to prevent masquerade ,
which

should be signed by the TLCA, as a global and

public database requires general confidence.

R.2.4

So every communication with a data processor

should be done using strong authentication to

prevent masquerade of the system. Applying this

requirement to X.500 a drawback, already

mentioned in II.A, is introduced.

Requirement R.2.4 should be fulfilled also by

alternatives, e.g., WHOIS++ [2] and front-end

systems, e.g., SOLO [3].

II.D. Guidelines for a CA Architecture

Users will certainly have to have multiple key

pairs because of conclusion from subsection II.B.l

(R.2.3.2). It is a common reasoning that when one

public component is signed by a certain CA, it

means that this CA allows the user to use the key

according to the set of rules that express the CA's

policy. So if the user is allowed to have signed the

same public component by another CA with a

different set of rules, this means that the key pair

effectively embodies the union of two sets of rules.

This is not a serious problem, as the user' s entry

would contain two certificates and according to

R.2.3.4 both superior CAs could see if CA in

question violates any of their policies.

It should be emphasised that it is a certificate,

which embodies a CA policy and not a key. Again,

policy means that a certain person, whose role is

identified by a UN, is allowed to do certain tasks,

identified by CA' s rules. Therefore, if a CA has not

put restrictions on a public key (its length, for

example), user may have the same key in multiple

certificates, signed by different CAs.

A practice of having many certificates with

equal ISSUER fields and equal SUBJECT fields (be

it with the same or different key pairs) should be

avoided. It is obvious that the certificates with same

ISSUER/SUBJECT fields and same keys are

completely obsolete. In case of different keys the

following should be considered. When a CA signs a

key, this means that it allows the user to sign the

data with that key according to its policy, which

means that one key pair is usually enough and

others just add complexity to certificate

management. However, if one entity insists on

having multiple key-pairs per UN, this is acceptable

as long as both are signed by the same CA, because

of the threat described below.

Assume a case of a CA having two key pairs.

Suppose a CA signs certificates with one key and

the CRL with another. This means that one key

(used to sign user' s key) has to be verified against

one sequence of certificates, and the other one for

CRLs against another sequence of certificates.

When verifying each of these sequences, the same

problem with two additional sequences for each

starting sequence of certificates may appear again.

Even worse, this would be in a hierarchy, where

ISSUER and SUBJECT can be on the same

hierarchical level, where this could result in loops

and infinite procedures. Thus we can conclude:

• Multiple key pairs per UN are allowed only if

their certificates have the same ISSUER field

OR if each CRL is signed by all keys.

R.2.5

Note that requirements, given so far, support

incorporation of non-hierarchical systems (like

PGP[ 11]) in existing global hierarchy. When such

community will be incorporated, it should preserve

all interna! functionality, otherwise users might

refuse to use it. This means that in a global context

certificates in question will be of the same

hierarchical level. Corollary:

1. It is a certificate that embodies a CA' s

policy. Therefore it should be possible to get

information about the certificate' s issuing

policy.

2. Users may have many certificates because of

the different roles they have in their life,

where the various roles will be identified by

different UN in the SUBJECT field of

certificates.

3. Except in case ofR.2.5, users (CAs) may have

only one key pair per UN. However, they are

allowed to have multiple certificates for the

same SUBJECT UN, but with different

ISSUER UNs. This means that users may
have the same key pair signed by different

CAs, if CAs have not put specific restrictions

on the keys.

R.2.6

It is important to notice that R.2.6 rules do not

prohibit prototype certificates, where one entity

creates a self-signed certificate. Thus revocation

procedures as described in II.E. 2. IV can be carried

out via a database. Moreover, the top-level CA
should have its self-signed certificate stored in a

database by default. This is far more convenient

than publishing its public key in newspapers, for

example. A prototype certificate in an electronic



database that fulfils R.2.3.4, R.2.3.5 and R.2.4 has

the same level of trust as those published in a

newspaper, but it is already in electronic form and

can be used directly without manual retyping,

which is time consuming and error-prone.

Careful readers might have noticed that in this

paper we have assumed properties, which can easily

be adopted by the 84 version of X.509 certificate.

Thus building a certification infrastructure can be

accomplished by the most widespread systems that

actually support only 84 certificate. To specify a

policy, a separate field can be used in a secured

database entry.

To avoid situations where more certificates with

the same ISSUER and SUBJECT field would

appear and would thus complicate verification

processes (as all certificates in such an entry should

be checked), the following could be required:

• Users (and CAs) may not have two or more

certificates with the same ISSUER and

SUBJECTfields, which means that one CA is

allowed to sign only one certificate per UN.

R.2.7

In case of a 93 certificate, the policy could be

put into a new attribute, while the other additional

field could be used for global unique identification

of certificate. This would make R.2.7 obsolete. As
we are catering for the set of rules, which could be

immediately used with existing systems, R.2.7 is

proposed. Note that it does not contradict with

R.2.5, but it merely restricts it to easier use the

oldest version of X.509(88) specification.

At the end it should be emphasised that all other

issues, which are not explicitly explained or

addressed, should be interpreted according existing

standards [4 , 5, 6, 7],

III. Conclusions

In this paper the importance of general

properties of a public key certification

infrastructure is pointed out and a general set of

rules is given. The approach is based on a policy as

a starting point to define hierarchies. Reference

requirements are given that are suitable for small

and global environments to preserve their openness

and scalability. Local procedures are not imposed,

which can be therefore completely defined locally

and can thus accommodate any policy

requirements. Furthermore, the requirements for a

global database are very loose and can be met by

various implementations.

It is almost a fact that certificates will be

heavily extended with additional data fields [1],

The approach in this paper is general enough to

accommodate these additional possible attributes in

another way. It can be seen also as a

complementary part of version 3. For example, one

of the advantages of V3 is provision of users with

more user-friendly data (like RFC 822 e-mail

address of the SUBJECT), which is in line with

UBN/UAN concept in the paper. However, it

should be noted that automatic verification

procedures could be developed without these

extensions, using just 93 extensions. Two additional

fields in a 93 certificate give a possibility for global

unique identification and a verification path of a

certificate and a policy specification.

The main open problem is the formalisation of

security policy , which is just descriptively

mentioned in [5] and PEM RFCs [7], but is vital for

operational global infrastructure, especially to

enable automatic verification procedures.
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To date, major corporations and banks have declined to invest in public key technologies. While

much of this reluctance is due to the lack of an established certification infrastructure, there are

also a lack of well-defined risk models and auditing standards, and uncertainties regarding

legality and liability issues.

Existing models for wire transfer (UCC 4A) and credit cards (Reg E) place all the liability on

one party. Such models are not appropriate for general electronic commerce.

1 Requirements

No one disputes that paper is a bothersome anachronism in the electronic world, or that

verifying pen-and-ink signatures is costly and error-prone. But at least with paper, one retains

the basic "contextual controls" of document preparation and physical delivery. On a digitally

signed electronic document, on the other hand, there is nothing but the encoded signature. All

time, place and manner controls are absent, so nothing distinguishes a valid user signature from

one produced by anyone else who somehow obtained access to their private key. It would not

take too many multi-million (or multi-billion) dollar losses to erase all the savings produced by

this new technology.

Serious investments to commercialize digital signatures will occur only after leading national

auditing and legal experts are convinced that these systems contain adequate security controls

to warrant reliance in mainstream intra- and inter-corporate business transactions, typically in

the $10,000 to $10 million range.

The authorization model being developed by ANSI X9F meets the following requirements.

While these restrictions seem complex, they merely reflect ordinary business procedures made

explicit for purposes of machine verification.

1) Authorization is "offline"; all authorization information is conveyed in certificates.

These authorization certificates are defined in detail below. The authorization process

returns an indication of whether the subject document is acceptable given the restrictions

and authorizations contained in the signers’ certificates.

2) No human intervention is required in the authorization process. In complex and/or high

volume environments, this is an absolute requirement to give these security controls

credibility in the eyes of audit and legal experts.

3) Authorization may be based on

• document contents,



• identity or role of the signer(s),

• intent (purpose) of the signer(s),

• transaction context, or

• any combination of the above.

4) A user may fill one or more roles in an organization, but only exercises a single role for

a given document.

5) It must be possible to incorporate other documents by reference into a given document,

and make authorization decisions based on the incorporated document(s).

6) It must be possible for a user to delegate portions of his/her authority to another user,

on a short-term or long-term basis.

7) It must be possible to ensure that a single user cannot unilaterally authorize a document.

8) It must be possible to timestamp documents using trusted third parties. Such timestamps

provide proof that the document was created at or before the time specified.

9) It must be possible to identify both the user and device which sign a document.

2 Authorization Model

2.1 Document Structure

This model requires the ability to attach multiple signatures to a document, as well as the ability

to include per-signer information in the signature computation. [4] defines a useful format for

this purpose.

This model does not constrain how a document or transaction is represented within a single

system. However, a single unambiguous representation is required when signing or verifying

a document, since both signer and verifier must perform their computation over the same

representation. The canonical representation for a document consists of a set of attributes,

extracted from the document, which are used in the authorization decision, and the actual

document content.

2.2 Multiple Signatures

A document may be signed by one or more users. Each user’s signature and other information

is contained in a separate signature structure. Each signature structure contains an indication

of the certificate needed to validate the signature, and a bit string containing the actual signature.

Additionally, other information relevant to the particular signer would be included in an

individual signature computation. This per-signer information, would be included in the

signature computation, as signature attributes. A signature structure may also include per-signer

information which is not signed, but merely appended to the signature structure (unsigned



attributes). An important unsigned attribute is the countersignature. A countersignature is a

signature on the signature structure in which it is found, rather than on the document itself. A
countersignature thus provides proof of the order in which signatures were applied. Since the

countersignature is itself a signature structure, it may itself contain countersignatures; this allows

construction of arbitrarily long chains of countersignatures.

2.3 Signature Attributes

Useful signature attributes might include timestamps, location information, and signature purpose

[5].

We can distinguish authorizing signatures, which must meet the restrictions specified in the

signer’s certificate, from other cosignatures by including an indication of the signature purpose

in the data being signed, by including the signature purpose as a signature attribute. This

signature-purpose attribute might have the values:

• authorization: authorization signature appropriate to the document,

• cosignature: authorization cosignature appropriate to the document; cosigner’s certificate

has sufficient authority to authorize the document, and

• witness: witness cosignature; cosigner’s does not have sufficient authority to authorize

the document.

Additionally, one might use a signature structure as a signed receipt on a transaction, in which

case additional signature purposes for receipt confirmation might be defined. Application-

specific purposes (e.g., medical record release) might also be defined.

A user may indicate the role s/he is acting in by including the role in the signature computation,

as a (per-signer) signature attribute. The asserted role may be matched against a role certificate

(or the user’s attribute certificate) during verification. This approach eliminates the need for

multiple users to share a public key certificate (and corresponding private key) assigned to the

role.

2.4 Authorization Certificates

Authorization certificates are a particular type of attribute certificate [2]. An attribute certificate

contains a reference to a "base" public key certificate, an issuer name, serial number, and

validity period, and a set of attributes (in this case, attributes used for authorization). Such

authorization attributes might include:

• Transaction Limits: These restrict the value of transactions (or other documents) which

an entity may authorize. The user would be restricted to originate transactions up to a

certain monetary limit, or between two boundaries.

• Cosignature Requirements: Additional signatures may be required for a given signature

to be considered valid. Quorum and weighting mechanisms can be used to construct

fairly elaborate checks and balances which explicitly govern the level of trust in each



user [3]. The order of required signatures may also be specified. (Note that cosigners

are specified via the digests of their public keys, to reduce the propagation of personal

name information.)

The use of cosignatures allows an organization to effectively define checks and balances,

and to explicitly specify the level of trust in a user. It also greatly reduces the risks from

inadvertent compromise of a private key. It allows distribution of the authorization

function over multiple locations and hardware platforms, with the resultant minimization

of risk from access control failures on one of those platforms.

• Document Types: The user can be restricted to signing only such things as ordinary

correspondence, purchase orders or other EDI transaction types, business contracts,

specified financial instruments, etc., as defined by industry-wide policies. It will be

desirable, for efficiency, to exclude large classes of transactions and documents.

• Authorized Signatories: An organization can indicate that only specific individuals can

"sign for" the organization, similar to a standard "corporate resolution" to this effect.

This might complement the document-type concept, as an additional control on signing

of "corporate" document-types.

• Geographical and Temporal Controls: These restrict the locations and time periods from

which transactions are considered valid. Use of a local trusted "timestamp notary," is

assumed. Such a notary would append a trusted timestamp to the originator’s signature

on a document, and sign the result.

o Time-of-day restrictions would normally coincide with the work-week of the

user’s locale.

o Location information would be associated with the notary, so as to restrict access

to a specific network segment, typically the user’s assigned work area. The

"granularity" of location controls would depend on the network architecture.

• Age ofSignature: The document is not valid unless the signature is verified within some

specified time period. For high-value transactions this period would be quite short, while

for more normal transactions (especially those sent via store-and-forward systems such

as X.400), a longer interval would be appropriate. The time of verification would be

provided using a receipt signed by a trusted timestamp service, containing, at a

minimum, the recipient’s name and the signature from the original transaction.

• Preapproved Counterparties

:

Restrict an entity to dealing with some small set of

partners, a common requirement in dial-up home banking systems. Another way of

stating this is that "free-form transfers" are forbidden. Sponsors know that in case of an

error, they stand a much better chance of getting their money back from a large, solvent,

creditworthy party (such as Merrill Lynch), and a much worse chance with a small,

unknown, unauthorized one (such as the user’s criminal confederate). Separate

certificates should be issued for each counterparty, to prevent a competitor from

obtaining the user’s customer list (other than himself) in a single certificate.



• Delegation Controls: It must be possible to limit the maximum authorizations an AA can

specify when issuing an attribute certificate.

• Confirm-To Requirement: The signature is not valid unless the verifier sends a copy of

the verified transaction to a third party (typically the user’s sponsor or work supervisor)

at a specified mail or network address, and (a) receives an accept or reject message, or

(b) a specified time elapses. This is similar to a cosignature, but occurs after rather than

before the transaction is sent. Such after-the-fact confirmation could be preferable in

lower risk situations, where few transactions will be rejected and obtaining the

cosignature in advance may be unduly burdensome.

A set of basic policies must be defined for use throughout the financial services industry (and

other industries) to provide a well-defined, predictable level of service for the verification

process. These policies would be agreed to on a multilateral basis by every participating firm,

and could stipulate that certain of the restrictions and authorizations discussed in this section

would always be deemed to be in effect, unless expressly provided otherwise.

2.5 Incorporation by Reference

A mechanism is needed to reference previously defined documents, such as contractual terms

and conditions, in a document. Such documents are treated as part of the referencing document

for authorization purposes. Such an incorporated document may imply constraints on the

document types and other attribute values which are acceptable in the subject document. This

is analogous to existing boilerplate in many types of documents. For example, government

procurement contracts typically incorporate clauses from the Federal Acquisition Regulation

(FAR), by reference. The contract will typically cite the clauses by number, title, and date, and

include language expressly making the incorporated clauses part of the contract.

An important example of incorporation by reference is an industry-wide authorization policy.

Industries or industry associations will typically develop such "industry policy" statements that

establish minimum requirements for signature verification. All participants would physically

sign these multilateral agreements, to ensure that all counterparties would be bound by the

encoded restrictions. (Normally, authorization certificates should be required in all cases, and

digital signatures would be deemed otherwise null and void in their absence.) These agreements

would be cited using the incorporation by reference mechanism.

3 Authorization Certificate Hierarchy

This section proposes a hierarchy of authorization certificates which might be useful in the

commercial environment. Issuers are referred to as Attribute Authorities (AAs), analogous to

the CAs which issue public key certificates. There are two distinct levels of certificates; those

issued within an organization, and those issued by a third party trusted by all participating

organizations. The trusted third party would certify organizations, and the chain of trust would

then extend from the third party down through certificates issued within the organization. This

provides accountability down to an individual, rather than the "organizational" accountability of

current systems (e.g., wire transfer).
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This paper discusses systems which construct and verify certification paths that span multiple

certification domains and trust models. It assumes the reader is familiar with basic concepts of

digital signatures and certificates, as presented in X.509 [1]. Such systems are required in order

to fully realize the benefits of electronic commerce in both wholesale and consumer markets.

The paper first describes the requirements for such a certificate verification system, and the

assumptions on the directory system used to store and retrieve certificates. Several existing trust

models are then described, and an algorithm is presented which can construct a valid

certification path between two entities, regardless of the model in use. Finally, the version 3

certificate extensions [2] which are used to constrain certification paths are examined, and the

algorithm is enhanced to incorporate their use. [4,5] describe other work in this area.

1 Requirements

There are two major requirements for the type of system described above.

It must be possible to verify a certification path automatically. This provides the greatest

flexibility and throughput, as well as enhanced security. In particular:

• The process must be automatable, perhaps in a self-contained module;

• No local trusted database is required (beyond a set of trusted public keys). If such a

database is provided, it is only used for efficiency reasons;

• No real-time interaction with user is required (although some implementations may
interact with the user in the event an unrecognized policy is encountered);

Additionally, interworking across a variety of environments is required:

• Multiple domains (certification policies, levels of assurance) must be supported;

• Multiple trust models must be supported;

• An entity (end user or CA) may have multiple certificates, issued by different CAs; and

• Any CA may, in general, cross certify any other CA.

2 Assumptions

This paper assumes certificates are stored in a distributed database which provides features



similar to those of an X.500 directory. These features include:

• The database is structured hierarchically, with entries being accessed via a hierarchical

name;

• Database servers can propagate requests which they cannot satisfy themselves (this

includes returning a referral to a different server in response to a request);

• Each server holds a subtree of the total namespace. Replication and caching also allowed

but not dealt with here (but see [3] for a discussion of caching issues);

• Different types of certificates are stored in different attributes (fields) of an entry. These

include:

o Forward certificates are issued by a CA to its subscribers. They are stored in the

directory entry of the subscriber;

o Reverse certificates are issued by a subscriber (which may be a CA) to its CA,
as an aid in constructing certification paths. They are stored in the directory

entry of the issuer;

o Cross certificates are issued by a CA to another CA which the issuing CA trusts,

to shorten the length of certification paths. This trust is gained by examining the

subject CA’s certification policy. They are stored in the directory entries of both

the issuer and subject CAs, to ensure that a complete certification path can be

built from either direction.

Using the existing X.509 attribute types, one can distinguish between certificate types as follows:

Forward (subscriber) certificates are held in the userCertificate and cACertificate attributes;

reverse certificates are held in the cACertificate attribute. These can be distinguished by

whether the owner of the entry is the subject or issuer of the certificate (forward and reverse

certificates respectively). Cross certificates are held in the appropriate (forward or reverse)

component of a crossCertificatePair entry. If two CAs cross-certify each other, each of them

holds both cross certificates, so both components of the crossCertificatePair would be present

in each CA’s directory entry.

3 Existing Trust Models

Although X.509 does not impose any particular structure on CAs, it may be reasonable to define

a hierarchical structure in which each CA (in general) certifies only entities which are

subordinate to it. Hence, we can construct a hierarchy of CAs, where the higher level CAs
(perhaps banks) sign the certificates of the CAs beneath them (e.g., companies), etc. The lowest

level of CAs sign user certificates. A variety of trust models have been defined, and some

implementations make assumptions about the type of trust model in use. All of these trust

models share the common property that a user need only trust one other public key in order to

obtain and validate any other certificate.



3.1

Top Down Hierarchy

The Defense Message System uses a hierarchical trust model for certificate management. The
model allows up to one million "root" CAs, each with one million subordinate CAs, each with

up to one million subscribers. The distinguished name of the subject of a certificate must be

subordinate to that of the issuer.

Internet Privacy Enhanced Mail (PEM) also uses a CA hierarchy, in which there is a single root,

which certifies policy CAs (PCAs). Each PCA publishes its policy, which can be used by a user

who is verifying a certificate within that PCA’s domain. There may be any number of CAs in

the hierarchy underneath a PCA; the distinguished name of the subject of all such certificates

must be subordinate to that of the issuer. Any CA may only subscribe to one PCA.

The naming constraints in both of these models are rather restrictive (e.g., a user must have a

different name for each CA he subscribes to). Additionally, the PCA concept will not allow for

automatic certificate path validation if a large number of PCAs exist, since the user may have

to make a judgment call on the acceptability of a new PCA policy at any time.

3.2 Bottom Up Hierarchy

The banking community prefers a model where CAs certify both their subordinates and their

superior CA. Rather than receiving the public key of the root CA, a subscriber receives the

public key of his/her own CA, and a certification path is constructed up the CA hierarchy to a

common CA, then down to the certificate being validated. Assuming most communications is

with entities close to each other in the hierarchy, this generally leads to a shorter certification

path. Also, compromise of the root CA is not as catastrophic, since most certification paths

don’t go all the way up to the root.

3.3 Web of Trust

In Pretty Good Privacy (PGP), no certificates are required. Key management is done by

face-to-face interchange of public keys (in which case each party signs the other’s public key),

or "introduction" by some entity that two parties both trust to sign their keys (effectively, a

one-level CA hierarchy). Some PGP keyservers (analogous to CAs, in the sense that they sign

the keys of many PGP users) have been developed, but the typically provide a very low level

of assurance. The scalability of this approach is very doubtful, especially if the model must

include other agencies, commercial entities such as EDI trading partners, and eventually

individual taxpayers.

PGP does accommodate the concept of multiple signatures on a public key; a user might then

trust a key signed by two individuals in which he has a minimal level of trust, or one individual

in which he has a high level of trust. This model lacks complete semantics as to (a) what would

be provided as input to the verification process to indicate these cosignature requirements, and

(b) how this would extend to a complete certification path. Use of multiple signatures is not

addressed further in this paper.



3.4 Composite Model

A structure is needed which supports multiple CA hierarchies of any depth. Forward, reverse

and cross certificates are needed.

Cross certificates are used to issue certificates between hierarchies. Some likely scenarios might

be:

• The PEM high-assurance PCA cross certifies the root of the banking hierarchy,

indicating certificates from that hierarchy are trusted by PEM users under that PCA’s
policy.

• A CA in the banking hierarchy cross certifies the PEM high-assurance PCA, indicating

all such PEM certificates are usable for subscribers to that CA (e.g., a particular

application or particular class of users).

• A PGP user or keyserver cross certifies the PEM root CA, allowing PGP users to use

PEM certificates. This assumes the PGP implementation can parse the PEM certificate

format.

• The PEM low-assurance CA cross certifies a PEM keyserver, allowing use of PGP
certificates by PEM low-assurance users (assuming the PEM implementation can parse

PGP certificates).

The net result is a "forest" of CA hierarchies, with cross certificates between the hierarchies at

various points. It is desirable that cross certificates involve CAs at a fairly high level in both

hierarchies, to minimize the number of cross certificates and provide the maximum amount of

interoperability.

4 Path Building Algorithm

The algorithm is quite straightforward, and lends itself well to parallel operation. Thus, an

X.500 implementation which supports asynchronous operation could submit multiple requests

in parallel. It relies on proper identification of cross vs. forward vs. reverse certificates, using

the existing X.500 attribute types.

An entity may have any number of forward certificates from any number of CAs (although the

number is expected to be fairly small). An entity will have one or more public keys of CAs
which it trusts (again, a relatively small number).

As input, the algorithm receives a trusted public key (e.g., the user’s CA or a root CA), along

with the name of the trusted entity, and a target certificate. The algorithm builds a path up from

the target (the forward chain), using forward certificates, and up from the trusted public key

using reverse and cross certificates (the reverse chain), until a common point of trust is reached.

To build a path up from the target, one looks up the certificate(s) of the issuer, recursively, until



the "root" of the hierarchy is reached or until a path is complete. The root has no forward

certificates, although there may be reverse certificates (in another CA’s entry) and cross

certificates (in the root’s entry) in which it is the subject. In general, only a single issuer

certificate will be found, i.e., a public key of a CA is only present in one forward certificate,

and possibly one or more cross certificates. The process results in a list or tree of potential

certificates in the forward chain.

To build a path up from the trusted public key, one looks for reverse and cross certificates

(recursively). This results in a list or tree of potential certificates in the reverse chain.

A path is complete when one of the certificates in the reverse list has, as its subject, the issuer

of one of the certificates in the forward list. (If CAs have multiple keys and certificates, the

reverse or cross certificate must of course certify the public key used in the forward chain.)

e

In the top down model, there is generally no reverse chain, and the path simply extends from

root to target (possibly via cross certificates). In the bottom up model, the reverse chain extends

from the user’s CA to a common ancestor CA, where it intersects the forward chain (again,

possibly with cross certificates in the chain).

5 Certification Path Constraints

The certificate extensions draft [2] describes constraints which may be placed in a CA’s

certificate, along with procedures for verifying a path (once it has been constructed). It also

defines other useful extensions, e.g. a key ID which can be used to indicate which of a CA’s

certificates signed a particular subject certificate.

Constraint extensions include:

• Policy identifiers indicate which policy the certificate may be used with. The verifier

may indicate that policy IDs must be explicitly present in all certificates in the path.

This accommodates the situation where a CA issues a number of cross certificates to

various CAs, with differing policies, but a verifier wants to restrict its acceptable policies

to some subset of these. A CA certificate in the path may indicate that explicit policy

IDs are required in all CA certificates in the remainder of the path. Note that knowledge

of a policy is required by a CA, when issuing a certificate containing a policy identifier,

and the verifier must indicate a set of acceptable policies, but the verification logic is not

required to perform any processing beyond byte-by-byte comparison of policy identifiers.

The existing model does not convey policy information (aside from that inferred from

PEM PCAs), so a path would either be deemed valid on its face, or require user

interaction (and familiarity with the relevant policies);

• Policy qualifiers are application data that may be used in the verification process (e.g.,

a reliance limit). These are (conceptually) passed to the application, and clearly their

widespread use would hamper both interoperability and automatability;



• Policy mappings indicate which policies a CA deems equivalent for verification purposes.

For example, a low assurance CA might consider its policy to be equivalent to a high

assurance policy, but clearly not vice versa. Mapping may be prohibited by the verifier,

or by some CA certificate within the path;

• A namespace constraint restricts the subjects of a CA’s certificates to lie within a

particular subtree of the X.500 namespace. This may apply only to certificates issued

by this CA, or to all subsequent certificates in the path;

• Name subordination restricts the subject name in a certificate to be subordinate to either

the issuer name, or to the issuer’s superior’s name. This applies to all further certificates

in the path;

• The total length of the (remaining) certification path may be constrained. This limits

trust in domains which are "distant" from the current domain in terms of cross

certificates.

Clearly, these constraints can be checked when building the path, particularly for reverse and

cross certificates, to prune unproductive paths from the forward and reverse lists. For example,

certificates containing the wrong policy are clearly not worth pursuing, if explicit policy IDs are

required. Similarly, if name subordination is in effect, entire portions of the directory

namespace can be excluded from the search.
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1. Introduction

Much of the discussion of information and information security technology focuses on

providing “new” capabilities to the customer. If we change our perspective towards what

business value these new capabilities can provide, we may find both holes in terms of

capabilities and a different perspective on security requirements. The most basic point is

that paper enterprise management is secure. The very real challenge any electronic

solution faces is to be at least as secure as a paper system and that it may add performance

and security advantages. Where technology has made a significant change in business

practices, we have seen an explosion of fraud because the mechanisms for defeating the

systems are easy, quick, and very profitable (cellular phones as well as credit and calling

cards being the most obvious cases). There are two main factors that have driven this

problem: inadequate use of security technology and defeating human, as opposed to

technical, decision-making. This paper will discuss these problems, as they relate to the

Public Key Infrastructure, the metrics for addressing these security problems and

introduce a model to deal with one of the neglected topics: enterprise security

management. This is a particular problem because organizations are realizing that they

present a complicated security “face” to the outside world as well as internally. To meet

this challenge, an organization needs a mechanism to articulate and enforce this security

policy and to communicate this policy to external and internal elements. Whatever

solutions are proposed, they must provide value-added service to the customer or else

public key go the way of the “paperless office”.

2. Metrics

As noted above, inadequate security technology and “human engineering” are the two

ways to exploit automated information systems. The complexity of managing public key

cryptography, in a system environment, aggravates this situation. For public key

systems, the strength of the implementation and the authorization of signatures are the

critical metrics.

2.1 Strength of Implementation

There are two factors that affect the implementation of public key systems: cryptographic

strength and platform assurance.

2.1.1 Cryptographic Strength

The characteristics of a cryptographic algorithm are its mathematical strength and key

size (or more simply effective key size). Cryptographic strength is conceptually the

easiest facet of the public key problem, however, for many reasons, it has not been solved



nor is a standard solution likely in the near future. This lack of standardization requires

organization’s to address algorithms, algorithm strength, and interoperability solutions

(such as internal or external cryptographic gateways). Though encryption and key

exchange issues are important, a standard solution for signatures will is critical for both

government and commercial enterprises. Without a standard signature structure, it is

unlikely true electronic business transactions will be possible.

2.1.2 Assurance

Though there is significant argument about encryption, assurance is a larger challenge to

support signatures. For signatures to be credible for electronic commerce, there needs to

be very high assurance that the person signing the material is actually signing it for more

than integrity, but to enter into some contractual agreement. This implies that the

platform and environment that the cryptography is carried out is trustworthy. It may also

mean that different signatures should be used for content as opposed to personal

signatures and perhaps a different, more trustworthy implementation is required for a

personal signature.

2.2 Authenticity and Authorization

If the Public Key Infrastructure is at all successful, nearly every person and organization

will have one or more set of public key credentials. The critical issue will be whether

these credentials give a person the privileges that they wish to use. Given the range of

roles and responsibilities within an organization where paper signature authorization is

necessary today, it is unlikely that a public key certificate alone will be sufficient to

capture the rich, dynamic organization policy and therefore some additional policy

service and management capability will be necessary.

3. Model Overview

The proliferation of a variety of security mechanisms from firewalls to key management

and cryptography and the drive away from standard solutions is driving the community

towards standard “meta-solution” frameworks such as the Internet Security Association

Key Management Protocol (ISAKMP) and the Simple Network Management Protocol

version 2 (SNMPv2). ISAKMP provides a tool for managing specific cryptographic

associations and SNMPv2 allows the management of a variety of devices, but neither tool

explicitly is aware of the organization’s policy nor the roles of individuals within the

organization. Organizational structures and policies will likely change independently of

the network architecture and individuals may move independently of the network. The

staff responsible for maintaining network and cryptographic services operating today face

the additional burden of determining and implementing a corporation’s de facto security

policy and procedures. It is quite conceivable for a manager to be allowed to review

corporate financial data using his workstation in the office, but not be allowed to do the

same at home - even if he has a cryptographic token.

This paper introduces a security management model built around the enterprise and

describes a notional implementation architecture for this model. The Enterprise Security

Management Model (ESMM) framework uses the enterprise as its basic element that can



have a variety of internal and external security relationships. This approach will

accommodate both corporations, governmental groups, and individuals since the structure

naturally supports a rich set of security relationships. Internal and external security

services including firewalls, certification bodies, timestamps, and notaries all support the

security policy of the enterprise and thus need to be included in the security management
framework. For example, financial transactions over the Internet may need to be

authenticated by a third party notary (which could be available from several vendors or

agencies). The participants in the transaction would need to negotiate which of these

service providers they would both find acceptable or accept a notary certified by some
accreditation body. They would also need to agree on both the authentication protocol

and encryption protocol that would be acceptable (even if a number are supported by both

parties). The organizations, nationalities, size of the transaction, and other factors may
affect what kind of exchange can be completed.

Today, these decisions are handled via off-line procedures or on an ad hoc basis meaning

that performance and security suffer. A key portion ofESMM is the communication of

relevant aspects of the enterprise’s security policy so that human security management

intervention is the exception and not the rule. The implementation approach is analogous

to that used for SNMP - a combination of software agents, security policy databases, and

a backbone management protocol. These components work together to allow the

modification of the enterprise security policy, the management of security entities, and

the notification of security events. The implementation approach allows security policy

to be handled as a policy - not as a router connection table or a cryptographic Application

Programming Interface (API). It will work with these elements, however, to ensure that

security services match operational capabilities and vice versa.

3.1 External Entities

The basic element of the ESMM is the enterprise. An enterprise is an entity that creates

and manages its own security policy and has a peer-to-peer relationship with other

enterprises and other external entities. The security policy of an enterprise can be

understood as a map of allowed services and information exchanges between external

enterprises and internal elements. All information and services in an enterprise are either

explicitly or implicitly labeled at the granularity required by the enterprise.

Governments, corporations, other organizations, security servers (explained below), and

individuals can all be external entities. The security policy agreements between these

entities can range from the simple - a company notifying a business partner that an

Electronic Data Interchange signature or privilege verification has failed - to the

sophisticated - a teaming agreement between several corporations where a variety of

information and services of different sensitivities are shared.

Security servers provide security services to other entities. Time stamps, notaries,

cryptographic gateways, key/compromise managers, and accreditation bodies are all

security services that are useful in an inter-enterprise environment. These entities provide

security management support services: key/compromise managers notify enterprises of

compromised equipment or individuals; accreditation managers certify that other

services, such as notaries, are approved to provide their services; and cryptographic



gateways provide trusted encryption and authentication translation services for

interoperability.

3.2 Internal Entities

Enterprises, in turn, may consist of subenterprises, security servers, individuals, and

information and services. Subenterprises would typically be an organizational

component of an enterprise. In addition to the security servers that exist at the inter-

enterprise level, firewalls, critical databases, and Enterprise Management Workstations

could all be found within an enterprise. Information and services include financial

transactions, labeled data (such as personnel information or classified documents), and

decisions or votes.

3.3 Inter- and Intra- Enterprise Relationships

In addition to the allowed usage of services and information by individuals and groups,

enterprise security management needs to address the interconnection of enterprise

security policies. Components need to be able to communicate their ability to support the

security policy so that routing, encryption, and other measures can be used to ensure

policy compliance or the detection of portions of the system that cannot support the

overall enterprise security policy.

3.4 Global Management Framework

National or international accreditors are needed to create, oversee, and delete enterprises

and other entities to adjudicate transactions and establish a legal basis for electronic

business. These entities do not need to control security policies of the enterprises within

their domain, but principally verify their existence to other enterprises.

4. Implementation Discussion

As noted throughout this paper, the actual security policies and procedures of an

enterprise implemented by their AISs are dynamic, and often complicated. In order to

realize these policies and procedures, some method is needed to communicate and

manage them and tie together the communication, application, and security management

systems so they work together, but do not interfere with each other. This could be done

through extensions to existing protocols and applications, such as ISAKMP or SNMPv2.

Many of the entities in the ESMM would be represented by an Enterprise Security

Management Agent (ESMA) that acts as an interface between the enterprise security

policy and the lower level devices and services that need to support that policy. Thus, a

change in an organization’s security policy could be entered in at an ESM workstation

and result in changes to firewalls, user applications, and security servers: the notification

of the loss of a user’s cryptographic token could be sent to a key/compromise manager,

servers, and other workstations in the organization, as well as to relevant external entities

to ensure that actions on behalf of the corporation by that individual would not continue

to be permitted.



The implementation of the ESSM consists of three elements. Enterprise Security

Management Agents (ESMAs), Security Management Databases (SMDBs), and the

Enterprise Security Management Protocol (ESMP). Security aware enterprise elements

will have an SMDB and ESMA. The SMDB contains the relevant representation of the
enterprise security policy as well as information about its own security configuration.

The ESMA communicates with Enterprise Security Management workstations as well as

network management applications, cryptographic APIs, and other security relevant

portions of the element.

The ESMP will need to provide a series of basic service to support a dynamic security

policy: add, delete, or change the status and configuration of ESMAs and SMDBs; add,

delete, or change the status of organizational and other entities within the existing policy

framework; change the Enterprise Security Policy; support security queries from ESM
workstations; and allow alarms and other “pushes” of critical information from ESMAs.
There are several parts of the ESMP that are particularly relevant to the PKI: the

specification of allowed keying relationships, approved security servers, and compromise

notification “pushes” as seen in the two examples below. These examples walk through

the automation of ordinary business processes for a contract between two firms and the

promotion of a company employee.

4.1 External Case - Contract between two businesses

This case walks through the process from the conclusion of negotiation between two

firms over a contract.

1 . Company One submits the contract to Company Two for signature. Company One
may go through the signature process described in the following steps, however, the

verification process would be identical.

2. Officer from Company Two cryptographically signs the contract and returns it to

Company One. In addition to the signature, the Officer will need to include an

authorization letter, signed by Company Two, for signing the contract or a generic

letter authorizing agreements up to some specified amount.

3. Company One confirms that Company Two is the real Company Two with the IRS or

SEC. The IRS or SEC acts as a registry for all companies (within the US) and

provides the company with the keying material so the company can create its own
public key certificates as well as manage its own security policy.

4. Company One verifies with Company Two that the Officer is Authorized to sign the

contract. This could be done either via the authorization letter signed by the company

or a query of its policy server requesting confirmation or a list of authorized company

officers.

5. Company One verifies the Officer’s signature. This is ensuring that the Officer, in

fact, is empowered to enact the agreement.

6. Company Two carries out a similar process.

If a problem with the Officer (or his token) occurs, his company would have a record to

notify other companies that might work with him. Also, a revalidation of some

signatures may need to be done.



4.2 Internal Case - Promotion of a company employee

This case walks through the promotion of a company employee from the time the

promotion decision is made through its implementation.

1 . Manager submits and signs appropriate documentation.

2. Appropriate Senior Managers concur and sign. The level and amount of the

promotion may require different signatures or sequences of signatures. It may also be

possible for certain very Senior Managers to bypass intermediate steps and directly

authorize promotions.

3. Accounting processes the request. The whole “Human Resources” process could be

automated and transactions passed directly to the financial organization where

verification of signatures and authorizations could be done. Accounting may also

verify that funds are available and other policy factors are addressed.

4. The promotion is implemented.

5. Conclusion

This paper has posed a basic framework to allow the management of security objects at

the level of organizations and individuals - where security requirements tie directly to

functional services. If the concerns raised herein are addressed, credible use of electronic

processing could provide quicker and more secure implementation of corporate policies.

Some such structure is necessary to effectively support realistic security in the dynamic,

heterogeneous security and operational environment facing organizations today.
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Abstract

We propose a Certificate Meter to improve trust in the public key infrastructure (PKI)

security services provided by certificates issued by a Certificate Authority (CA).

Electronic commerce information security requirements include confidentiality,

authenticity, assurance, and integrity. The PKI should provide services to meet these

requirements based on the concepts of public key cryptography, certificates, and CAs. Use

of a Certificate Meter addresses two PKI issues: The Certificate Authority is efficiently

paid for its services; and the parties using a certificate in a transaction are provided with

assurance that the corresponding private key is secure. The Certificate Meter embodies

concepts already implemented in new Postage Meters — a secure cryptographic processor

that has the ability to store and charge funds for use of its cryptographic keys. This

relationship of the Certificate Meter and Postage Meter concepts leads to an especially

appealing implementation in which both meters are combined in a single secure processor,

and the Postal Service acts as the Certificate Authority.

Background

Public Key Infrastructure

The Public Key Infrastructure provides information security services to meet the security

requirements of parties to an electronic commerce transaction. The parties exchange

information during a transaction and wish the exchange to have similar security properties

as are achieved in a face-to-face business transaction. In particular, all parties to a

transaction must be protected from misconduct by the other parties, and from

eavesdroppers and impersonators. The security requirements include:

1 . Confidentiality: Some transaction data must remain secret from outside parties.

2. Integrity: Each party must be able to verify that messages in the transaction have not

been modified or replaced.

3. Authentication: Each party must be able to verify that the other party is indeed who

they claim to be, and are authorized to perform their part of the transaction.

4. Non-repudiation: No party can deny that they sent the messages in the transaction.
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5. Assurance: Each party must be assured that the PKI, the Certificate Authority and the

other parties to the transaction are performing their tasks in a way consistent with that

party’s security requirements.

Many security services are provided by public key certificates signed by a Certificate

Authority. The certificate provides evidence that the public key in the certificate was

presented to the Certificate Authority by the entity identified in the certificate. However,

several issues need to be addressed.

The certificate says nothing about the security of the private key. Each party must trust the

other parties to maintain the secrecy of their private keys. This is a critical requirement of

the PKI for business transactions. The users of the PKI have no basis for this trust. The

private key is usually accessible on the computer system that is providing the

communication services for the transaction, and thus can be accessible to hackers. Even if

the private key is protected, usually through a password, it represents a weak link in the

process.

Users of the PKI, who suspect compromise of their private key, are supposed to send a

message to the Certificate Authority to revoke that certificate. Unfortunately, only users

with the most tightly controlled computer security are likely to be aware of a private key

compromise. Once a key has been compromised, the process of issuing a new certificate

should require the user to again prove their identity to the Certificate Authority. This

inconvenience means that users may prefer to assume that their key is not compromised,

unless presented with overwhelming evidence.

What is the status of a message authenticated by a certificate that is revoked because of

compromise of the private key? Ifthe message is not received before the private key is

compromised, then there is no reason to trust the authentication. In particular the date in

the message is not trustworthy. Ifthe message has not been stored securely from a date

preceding the compromise, then the message is suspect.

Confidentiality is lost for any message previously encrypted with the public key associated

with a compromised private key, or if the message is encrypted with a key communicated

using the compromised key. Loss of confidentiality applies to all messages sent before or

after the key is compromised.

Certificate Authority

The Certificate Authority operates under a security policy that specifies the method of

publication and authentication of the Certificate Authority public key. The policy also

specifies certificate issuance, revocation and the overall infrastructure security policy.

The Certificate Authority provides most of the trusted services of the PKI including:

1 . Signing public key certificates that bind the authorization and identity of a user, to his

public key. The signature is performed using the Certificate Authority private key.

2. Providing users with ability to access and verify certificates using the Certificate

Authority public key.
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3. Provide assurance of user authentication to the level claimed by the certificate, as

specified by the policy governing the Certificate Authority. The security policy

specifies procedures required to verify the user’s identity and authorization.

4. Provide for certificate revocation and timely access to certificate revocation records.

While the Certificate Authority is trusted to provide these services, it generally assumes

limited or no liability for security failures resulting from loss or leaking of private keys

corresponding to certificates.

United States Postal Service and Electronic Commerce Services

The United States Postal Service is actively preparing to enter into electronic commerce as

a Certificate Authority. The goal is to ensure that electronic commerce is afforded the

same trust and security that hardcopy enjoys.

The USPS strategy is to enable business quality Electronic Commerce through a common
ubiquitous, universal access, nationwide infrastructure endorsed by industry and

government.

The USPS infrastructure will provide certificate management services including certificate

issuance, identity verification, certificate distribution, status of certificate (existence, and

revocation). The USPS also proposes electronic correspondence services including

cryptographic postmark and seal, archive, and authentication. The postmark establishes

the existence of the message in an unmodified state at a specific point in time.

The USPS Certificate Authority plans to charge a service fee for issuance of a certificate,

and small fees for use of the service. As stated above, a Certificate Meter provides an

efficient way to pay for use of the Certificate Authority services. This is especially true if

the Certificate Authority is the Postal Service. A new IBIP meter is secure co-processors

with the key management and payment infrastructures and capabilities to perform the

function of a Certificate Meter.

Vendors and Consumers

During a transaction various parties place different levels of trust in each other. In

particular the Certificate Authority is more trusted than the certificate holder.

A consumer and a vendor taking part in an electronic commerce transaction place different

trust requirements on the transaction. The vendor wishes to be assured that the credit

issuer will assume liability for a transaction, as is done now in credit card transactions. The

customer wishes to be assured that the vendor is authentic and that credit and transaction

information passed to the vendor will remain confidential. That is, the customer wishes to

be assured that the vendor’s private key is secure, while the vendor wishes to be sure that

the credit issuer will cover the transaction. The vendor may therefore accept the signature

of the customer after verifying with the credit issuer. The consumer needs assurance that

the vendor’s private key is secure. That assurance is usually explicitly excluded from the

liability assumed by the Certificate Authority.
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A good way to provide the consumer with the needed assurance is for the vendor to use

an approved secure co-processor. The certificate can indicate that the certificate keys were

generated within, and the private key retained within the secure co-processor. A certificate

meter is a secure co-processor, that generates, hides, and controls use of a certificate

private key.

Metering Postage

Many businesses world-wide have been using a secure funds-metering device for the past

75 years. The postage meter is a tamper-evident, periodically inspected device that

maintains postage funds and accounts for their use in printing postage. Funds are

deposited in postage meters either manually at the post office, or using a one time

cryptographic code received by phone.

Postage by Phone® is a secure cryptography and telecommunications-based electronic

postage payment system operated by Pitney Bowes Inc. Since 1979. Postage by Phone®
provides an electronic commerce system for postage payment for more than a half million

businesses. The experience gained from operating this secure payment system and dealing

with users from all business segments can be effectively utilized in for operating a PKI.

USPS Information Based Indicia Program

This year the USPS announced the Information Based Indicia Program (EBIP). The goal

of this program is to use digital printing technology and cryptography to provide added

value and security in the postage metering process. The Vision Statement of the IBIP

program is:

• Establish a new form of postage indicia that enhances the security of postage revenue

and supports expanded Value Added products and services that are useable by all

mailers.

• Improve the level of detail and type of information by which we manage USPS
business and processing activities and enable more reliable and accurate performance

measurement.

Meter Security

Today, postage meters are secure cryptographic co-processors. The advanced technology

Postage Meters proposed in the EBIP program, and the most recent meters submitted to

the USPS include many properties of interest to the PKI, including:

• Digital Meters are assigned to authorized businesses,

• Digital Meters are periodically inspected for presence, evidence of tampering, and

correct operation,

• Digital Meters are secure cryptographic modules, that will be tested against a USPS
version ofFIPS 140-1,

• The USPS will maintain the ability to authenticate cryptographic messages from a

Digital Meter.

Postage meters designed to meet this proposal have the security, cryptographic and

communication features necessary to perform the functions of a certificate meter. A
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postage and certificate meter is a device that combines the capabilities of a postage meter

and a certificate meter, providing significant advantage to the Postal Service Certificate

Authority and to the user. .

The Certificate Meter

Concept

A Certificate Meter is a secure cryptographic device with secret information that allows

secure communication with the Certificate Authority and capability to use and manage the

private key of a certificate. The Certificate Meter includes metering and accounting

capability. It provides convenient low cost payment of charges per use of a certificate

private key. Postage metering and certificate metering functionality do not have to be

combined. However, putting these functions together provides economic efficiency.

Advantages to the Postal Service or other Certificate Authority include:

• increased use of existing meter tracking infrastructure to provide assurance that the

certificate meter is used by the authorized party,

• fewer devices to manage and inspect, and the legal right to inspect already in place,

• provides a secure communication channel using a unique secret key stored in the meter

and known to the Certificate Authority to manage keys and certificates

• produce authenticated messages for Postal Service regarding the status and usage of

the meter, thus providing additional security and assurance for postal funds and

certificate authority payments.

• use of the postage and Certificate Meter for postage payment provides ongoing

assurance to the Certificate Authority that the device is operating correctly, and has

not been abused.

• Provides a convenient mechanism for the Certificate Authority to collect payment for

its services.

Advantages to the user are:

• a single secure co-processor to validate payment of certificate use charges and postage

reduces the number of secure devices to manage,

• provides a turnkey device to generate key pairs, and keep the private key secret,

• a single account to pay for certificate usage and postage,

• Postage and Certificate Meter can efficiently pay Certificate Authority charges for new

certificates and for use of the certificate,

• secure installation and use of the private key corresponding to the certificate’s public

key,

• secure revocation of certificates.
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Assurance of Private Key Security

Assurance that another user’s private key has not been compromised can only be obtained

by the use of a secure co-processor. The secure co-processor generates the public and

private keys, produces a “new public key” certificate signed by a private key ofthe co-

processor, and exports only the “new public key” certificate. The Certificate Authority can

verify the certificate, and thus be assured that the private key is held inside the Certificate

Meter.

Assurance that no one tampered with the Certificate Meter can be improved by requiring

periodic inspection. If the owner of the Certificate Meter refuses inspection, then the

certificates associated with that Certificate Meter will be revoked by the Certificate

Authority.

Certificate Revocation

A user may decide to ask for a certificate to be revoked for several reasons:

• the conditions for use of the certificate may no longer hold,

• the user may suspect some misuse of the certificate,

• the certificate may be renewed as part of a standard security process.

The user can ask the Certificate Meter to sign a message requesting or confirming

revocation of a certificate. That message is sent to the Certificate Authority, who thus has

assurance that the request for certificate revocation is from a legitimate source and thus

revokes the certificate. The Certificate Meter can erase the private key, thus removing any

possibility of further use of that key.

The Certificate Authority can revoke a certificate while in secure communication with the

Certificate Meter. The CA then has assurance that the private key of the certificate is lost

and can not be reused.

Payment

The private key corresponding to the certificate’s public key is never known outside the

Certificate Meter. The meter controls the use of the private key and can assess charges for

use or management of this key. The payment can be automatically debited from the funds

stored in the meter, just as is done now with a postage meter. This simple means of paying

for use ofPKI provides a significant advantage of simplicity and security to the user and

to the Certificate Authority.

Conclusion

The Certificate Meter provides useful functions for users of the Public Key Infrastructure

and for the Certificate Authority. Users have assurance that their private keys and the

private keys of other parties are secure. Users and the Certificate Authority have a

convenient and secure method to pay for use of the Certificate Authority services. In

particular, the integration of the postage metering system with a Postal Service based

Certificate Authority provides a unique and consistent combination of security and

convenience.
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ABSTRACT
In this paper we propose a novel solution to the problem of managing cryptographic

keys for end-to-end encryption, in a way that meets legal requirements for

warranted interception. Also included are a discussion of what might constitute a

reasonable set of requirements for international provision of such services, as well

as some analysis of the cryptographic properties of the scheme and how it might

operate in practice.

I. INTRODUCTION

There has been much recent discussion on the question of how to meet users'

requirements for security services, such as confidentiality and authentication. This

has been largely prompted by the US government's Clipper proposals [1], as well as

the increasing use of electronic means for transferring commercially sensitive data.

On the one hand, users want the ability to communicate securely with other users,

wherever they may be, and on the other hand, governments have requirements to

intercept traffic in order to combat crime and protect national security. Clearly, for

any scheme to be acceptable on a wide basis, it must provide the service users

want, as well as meeting the legal requirements in the territories it serves.

To create a platform that can be used to provide user services, it is anticipated that

solutions will be based on the use of trusted third parties (TTPs) from which users

can obtain the necessary cryptographic keys with which to encrypt their data or

make use of other security services. Law enforcement agencies' requirements will

be focussed on the need to obtain the relevant keys from a TTP within their

jurisdiction, so that they can decrypt precisely those communications that they are

authorised to intercept.

In this paper we propose a novel mechanism that will enable TTPs to perform the

dual role of providing users with key management services and providing law

enforcement agencies with warranted access to a particular user’s communications.

Unlike other proposals, the mechanism allows users to update their keys according

to their own internal security policies. We then list typical requirements for such a

scheme, and consider how well the proposed mechanism meets these

requirements. We conclude by considering possible variants of the basic method



and also how other proposed schemes for using TTPs in this way relate to the

described method.

This paper was produced as part of the UK DTI/EPSRC-funded LINK PCP project

Third-Generation Systems Security Studies.’ Participants in this project are

Vodafone Ltd, GPT Ltd and Royal Holloway, University of London.

II. THE MECHANISM

The proposed mechanism is based upon the Diffie-Hellman algorithm for key

exchange [2], In order to simplify our description, we consider the mechanism only

in relation to one-way communication (such as e-mail). The adaptation of the

scheme for two-way communication is very straightforward.

More specifically we present the mechanism in the context of a pair of users A and

8, where A wishes to send 8 a confidential message and needs to be provided with

a session key to protect it. We suppose that A and 8 have associated TTPs TA and
TB respectively, where TA and 78 are distinct.

Prior to use of the mechanism, TA and TB need to agree a number of parameters,

and exchange certain information.

• Every pair of TTPs whose users wish to communicate securely must agree

between them values g and p. These values may be different for each pair of

communicating TTPs, and must have the usual properties required for operation

of the Diffie-Hellman key exchange mechanism, namely that g must be a

primitive element modulo p, where p is a large integer (satisfying certain

properties). These values will need to be passed to any client users of TA and
TB who wish to communicate securely with a client of the other TTP.

• Every pair of TTPs whose users wish to communicate securely must agree the

use of a digital signature algorithm. They must also each choose their own
signature key/verification key pair, and exchange verification keys in a reliable

way. Any user 8 wishing to receive a message from a user A by TTP TA must

be equipped with a copy of TA's verification key (presumably by their own TTP
78) in a reliable way.

• Every pair of TTPs whose users wish to communicate securely must agree a

secret key K(TA,TB) and a Diffie-Hellman key generating function f. This

function f shall take as input the shared secret key and the name of any user,

and generate for that user a private integer b satisfying 1 < b < p-1 (which

will be a ‘private receive key' assigned to that user-see immediately below). The
secret key K(TA,TB) might itself be generated by a higher-level Diffie-Hellman

exchange between the TTPs.

Given that 8 is to be provided with the means to receive a secure message from

A, prior to use of the mechanism A and 8 need to be provided with certain

cryptographic parameters by their respective TTPs.

• Using the function f, the secret key K(TA,TB) and the name of 8, both TA and

TB generate a private integer b satisfying 1 < b < p-1. This key is known as B’s

private receive key. The corresponding public receive key is set equal to g
b

mod p. The private receive key b for 8 needs to be securely transferred from

TB to 8 (like the other transfers discussed here, this can be performed ‘off-line’).

Note that 8 will be able to derive its public receive key from b simply by



computing g
b mod p. Note also that this key can be used by B to receive

secure messages from any user associated with TA; however, a different key
pair will need to be generated if secure messages need to be received from
users associated with another TTP.

• A must also be equipped with a copy of B's public receive key. This key can be
computed by TA using f, the name of B, and the key K(TA,TB), and then is

transferred in a reliable way from TA to A.

• Finally, by some means (perhaps randomly), TA generates another

Diffie-Hellman key pair for use by A to send secure messages to any user

associated with TB. Hence TA generates for A a private send key, denoted a

(where 1 < a < p-1). The corresponding public send key is equal to g
a mod p.

In addition TA signs a copy of A's public send key concatenated with the name of

A using its private signature key. The public and private send keys, together with

the signature are then passed to A by some secure means.

Hence, prior to commencement of the mechanism, A possesses the following

information:

• the private send key a for user A\

• a certificate for the public send key (g
a mod p) for user A, signed by TA;

• the public receive key (g
b mod p) for user B, and;

• the parameters g and p.

This information can be employed to generate a shared key g
ab mod p for the

encryption between A and B. This key can be used as a session key, or, even

better, as a key-encryption key (KEK). The KEK would then be used to encrypt a

suitable session key. This would facilitate the sending of email to multiple

recipients, for instance, as well as allowing the use of a new key for each message.

User A then sends the following information to user B:

• The message encrypted using the session key g
ab mod p

• The public send key g
a mod p for user A (signed by TA)

• The public key g
b mod p for user B

Once received, the public receive key g
b mod p allows user B to find its

corresponding private receive key b (there will be a different receive key for each

TTP with whose users B communicates). User B can then generate the (secret)

session key g
ab mod p by operating on the received public key g

a mod p for user A
using its private key b, and thus can decrypt the received message.

Should there be a warrant for legal interception of this communication, an

intercepting authority can retrieve the private key of one of the users from the

associated trusted third party within its jurisdiction and use this in conjunction with

the public key of the other user (which is transmitted along with the encrypted

message) to find the session key for the encryption. There is no requirement for the

intercepting authority to retrieve the private keys of both users.



III. A TYPICAL SET OF REQUIREMENTS ON A TRUSTED THIRD
PARTY SCHEME

Clearly, the definition and agreement of a set of requirements acceptable across a

broad set of countries is largely a political process. However, we can give a set of

typical or likely requirements on which to base an analysis of the suitability of the

proposed mechanism.

1 . Use of the scheme should provide visible benefits for the user. The design and
operation of the scheme means that the TTPs are capable of offering their

services to users on a commercial basis. By signing up to a licensed TTP, the

user will be able to communicate securely with every user of every TTP with

whom his TTP has an agreement. The user would potentially be able to choose
from a number of TTPs in his home country, thus increasing his trust in the TTP.

2. The scheme should allow national and international operation. The proposed

scheme achieves this by ensuring that the intercepting authority can obtain the

required keys from a TTP within its jurisdiction.

3. Details of the scheme should be public. This is achieved for the proposed

scheme by the publication of this paper!

4. The scheme should be based on well known techniques, and Diffie-Hellman

certainly qualifies.

5. All forms of electronic communication should be supported. The proposed

scheme can easily be adapted to include two-way communication such as voice

telephony.

6. The scheme should be compatible with laws and regulations on interception, as

well as on the use, export and sale of cryptographic mechanisms. This matter is

the subject of further study, but no problems have yet been identified.

7. Access must be provided to the subject's incoming and outgoing communication,

where a warrant is held. This is clearly achieved for the proposed scheme, as

the subject’s TTP will be able to provide the appropriate send and receive

private keys.

8. The scheme should support a variety of encryption algorithms, in hardware and
software. As the proposed scheme deals solely with key management, any

suitable encryption algorithm can be used, as long as it is available to the

recipient and legitimate interceptors. The best way to achieve this may be to use

a standard list of algorithms, such as the ISO register.

9. An entity with a warrant should not be able to fabricate false evidence. This is

particularly applicable in countries where intercepted communications are

admissible as evidence in court. The proposed scheme as it stands does not

meet this requirement, but the provision of digital signatures as an additional

service by the TTP will allow it to be met.

10

.

Where possible, users should be able to update keys according to their own
internal policies. The proposed scheme allows a user to generate new send key

pairs as often as wished (provided that he deposits them with his TTP) or have

them generated by his TTP. The receive keys, which are generated

deterministically based on the TTP shared key and the user’s identity, are

intended to be fairly permanent and change only if the TTPs' shared key or the

user’s identity changes.
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1.

Abuse by either side should be detectable by the other. We believe that this is

the case for the proposed scheme, although abuse by collusion between the two
sides may still be possible. The main disincentive to such abuse may be the

‘shrink-wrapped’ provision of the software, which we would expect to be bundled
in with, say, an email system or other telecommunications software.

12. Users should not have to communicate with TTPs other than their own. The only

communication required in the proposed scheme is with the user's own TTP.

13. On-line communication between TTPs should not be required. The independent

generation of the receive keys in the proposed scheme means that no such

communication is required for the proposed scheme.

IV. OPTIONS AND OTHER ISSUES

A. Trusting TTPs

The receiving party must trust the sending party's TTP, in order to verify the sending

party's public key, and also because the sender's TTP can generate the receiver’s

private key. However, this trust only concerns communications between the

receiver and senders belonging to that TTP. There will be a need for a certification

hierarchy to identify a common point of trust for different TTPs.

B. The Choice of Values

There has been considerable discussion in the literature on the benefits of using a

composite modulus for Diffie-Hellman, for instance. This, and other matters such as

the length of the modulus p and the primitive element g, are beyond the scope of

this paper.

C. Commercial Value

The proposed scheme relies entirely on its perceived value to users in order to be

taken up. Service providers will want to recover the cost of setting up the service

from their customers. Therefore the scheme must be able to provide value-added

end-to-end services that users want. Further investigation is required to assess the

level of demand for services such as:

• end-to-end encryption;

• end-to-end authentication;

• non-repudiation of sent message;

• message integrity.

Given that users will be paying for these services, they will expect a sufficient level

of security. In the event of security failure with financial impact on the user, he will

expect to be able to recover this, either via his insurers or from the organization

running the TTP. This makes running a TTP a potentially expensive business,

unless the financial risks run by the TTP can be adequately protected against. If

TTPs are not commercially viable, then the scheme is a non-starter.



D. Combined two-way Session Key

The two-way version of the proposed scheme provides two keys for communication:

one for each direction. These could be combined to form a single session key, or

just one of the keys could be used. The advantages and disadvantages of this are

a matter for further study.

E. Sharing Keys Between Trusted Third Parties

In an environment where commercial TTPs will be looking to offer additional

services to their users, it is possible that some users will want the extra reassurance

offered by having their keys shared between a number of independent TTPs. The
proposed protocol is easily adaptable to provide this feature. For instance, the

ideas of Micali [3] for adding secret sharing on top of existing schemes could be

adopted.

V. OTHER PUBLISHED SCHEMES

A. The Goss Scheme
A scheme designed by Goss has been patented in the US [4], In this scheme, a

shared secret key is established by combining two Diffie-Hellman exponentiations

using fixed and varying (per session) parameters. At first sight, this appears to

correspond to the receive and send keys in the proposed scheme. However, the

Goss scheme uses a universal modulus and primitive element. If x, x' are A’s fixed

and variant keys, and y, y' are B’s, then the shared key is calculated as

This could be viewed as a variant of the proposed two-way protocol whereby a

universal modulus and primitive element are used and the two keys are combined
by XOR-ing them.

B. Yacobi Scheme
This scheme [5] is almost identical to the Goss one, but uses a composite modulus

and combines the session keys by modular multiplication rather than XOR-ing.
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Abstract

This paper hypothesizes the need for an integrated international security infrastructure

that provides a number of security services needed to support international commerce.
While the services could be independently developed and offered by independent
service providers, there are economic reasons for integrating the services in a

comprehensive architecture and offering them as a package. As with most
technology-based applications, there are arguments for commonality and
interoperability of the components of the infrastructure as well as arguments for local

optimization of the services required by local users. There are numerous examples of

technology-based applications (e.g., railroads, electrical power, telephone, television,

cellular communications, and computer networks) where competing interests fostered

the incompatibility of products. In some cases the users benefited from competing

products until a market-driven “winner” was established. In many cases, the users

were economically penalized if they picked an ultimate “loser.” In some cases, the

“best” technology was not the “winner,” again as a loss for all users. This paper

recommends the development of an integrated international security infrastructure that

provides a minimal set of security services and supports a number of competing

security technologies simultaneous with the goal of automatically selecting a “winner”

based on the “best” technology and the widest user satisfaction.

Introduction

Computers date to the 50’s, shared computers to the 60’s, networks to the 70’s,

personal computers to the 80’s, and international commerce applications to the 90’s.

Security has primarily been an afterthought in each area. Standards have been made
and broken (bypassed, surpassed, or not passed) in nearly all areas. In many cases,

the standards have been too early, too late, or too restrictive. In some cases, the

standards encompass all competing interests and thereby serve none. This paper is

not yet another call for standards but for a design (architecture, model, framework, ...)

that can be used to provide a set of security support services that will be needed in the

next decade and those beyond.



There are a number of technologies (automobiles, telephones, television receivers)

that have little use without a supporting infrastructure (roads, switched communication

networks, transmitters). There are great economic bases established by the

manufacturer and sale of the products but even greater bases are established by

servicing the products. In many cases, the costs of the infrastructure supporting the

products are not charged directly to the users of the products (e.g., public roads,

commercial television programming). In other cases, the costs of infrastructure

services are paid directly and proportionately by the users (e.g., telephones).

The history of computer network services is varied. Within the U.S., local area services

(connections, switches, cables) have been paid for by the using organization.

However, the wide area services have been a combination of private, leased services

and subsidized, quasi-public services, starting with the research community. Thus
many users have become accustomed to “free” infrastructure services (i.e., services

paid for by someone else).

Technology standards and economics are two primary forces that must be addressed

in an international security infrastructure. Just as consumers are accustomed to

purchasing telephones and paying monthly charges for the phone calls they make, so

must international commerce consumers become accustomed to purchasing security

products and paying charges for the services they consume. The goals of the

workshop should include obtaining the broadest possible user base for a core set of

ubiquitous security services and allocating the cost of providing the services on a fair

and equitable basis.

In order to provide security services for international commerce, the security

infrastructure should include support for:

• a set of security policies acceptable for international commerce applications ranging

from low risk (e.g., less than $50) to medium risk ($50-$5000) up to high risk

($5,000-$500,000). Very high risk applications and risks resulting from cumulative

failures may require special handling.

• various security technologies, including cryptographic algorithms, personal security

tokens, and security mechanisms (e.g., 2-3 competitors in each major technical area

based on user demand).

• on an optional basis, vital information repository applications and conflict resolution

applications.

This support is necessary in order to be able to provide the following security services:

• digital signatures

• key management and distribution



• non-repudiation of transactions

• key escrow

Each item in the above two lists is described below.

Support

In order for a security infrastructure to be flexible enough to support a variety of

applications in various contexts, it must not be constrained to enforce a single security

policy and must not be required to make use of a single security technology. Each of

these issues is discussed below. In addition, there will be a need in the future for vital

information repositories and conflict resolution applications.

Security Policies

A security infrastructure will provide security services for a variety of international

commerce applications ranging from low risk (e.g., less than $50) to medium risk ($50-

$5000) up to high risk ($5,000-$500,000). Very high risk applications and risks

resulting from cumulative failures may require special handling.

The rights and responsibilities of the infrastructure service providers and clients, and
the expectations of each will vary according to the risk associated with the transaction.

An infrastructure service provider that enforces a single security policy will limit the

base of users from which it can draw its clients. Initially, a business will have a higher

probability of success the larger its user base. Long-term, a business will have a
higher probability of success if its growth is not limited to a market restricted to a

relatively fixed size user base.

Security Technologies

While the security infrastructure service providers will probably be independent of, or

only loosely related to, the technology providers, the latter are very important. Many
areas of technology will be involved, including cryptographic algorithms, personal

security tokens, cryptographic application program interfaces, communication

protocols, and the applications themselves. Interoperability will be required between

all the characteristics of sending and receiving applications as well as among the

providers of support services for the applications.

For example, mobile users will require specialized applications and support services

compatible with geographically distributed locations. Personal security tokens will be

expected to function both correctly and transparently at whatever facility a user has

chosen for information access. Mobile users of cellular telephones and users of credit

cards have become accustomed to ubiquitous acceptance of personal equipment and

offering of equipment. Thus, security services and their support services may not be

able to be tied to location or equipment.



International standards have been adopted in some aspects of the needed
technology. However, there are so many options and so many acceptable paths in

international standards that a default strategy of establishing “profiles” of standards to

guarantee compatibility and interoperability has been taken my many organizations.

In essence, a group of organizations seeking commonality of functions and the ability

to interoperate with large sets of diverse users establish a profile to use for

procurement and operational purposes. Only equipment and services complying with

the profile are obtained and used. A security infrastructure service provider must be
prepared to support multiple profiles in order to best serve the broadest community of

users.

Information Repositories and Conflict Resolution

Information is an asset to all organizations. The value of most information decreases

with time, e.g., there is a “statue of limitations” assigned to many records that renders

the information useless after it expires. A service that could reliably and irrefutably

indicate when the information was created so that its expiration time could be reliably

determined would facilitate a natural evolution to electronic media from the paper

world of today. In addition, some information is valid for an indefinite period of time,

e.g., records of public deeds. In this case, changes in technology may require that the

information be re-deposited, for example, if the minimum recommended key length is

increased. However, it may be important to record the history of deposits of the

information. Obviously, the correct date and time is an essential component of an

information repository and will be important consideration in conflict resolution.

An information repository could be used to store confidential information, also. The
information could be encrypted before being deposited. All parties relevant to the

information could share the necessary cryptographic key or it could be escrowed (see

below). The information could be even be filed with an expiration time, at which time

the information repository service provider would be able to destroy it. If necessary,

perhaps during a conflict, the information could be retrieved and made available.

Services

Although there are many security services that could be supported by a security

infrastructure, the following set have been found to be the most commonly requested

and offer the most tangible benefit for the investment to begin the service offering.

Digital Signatures

There are many services related to digital signatures that could be offered. The most

common is the creation of a digital certificate such that the authenticity of the subject

named in the certificate and the integrity (protection against replacement) of the public

key contained in the certificate is guaranteed. This service is somewhat equivalent of

the notary public service in societies where many of the people could not write (i.e.,

sign their names). The notary public was granted authority by the state to identify a



person through personal recognition and then “seal” the mark (e.g., X) of the person
on a document, thereby giving it legal recognition. The electronic equivalent of this

process has been given significant study both technically and legally, with a few states
now giving statutory recognition to the process. A chain of authority needs to be
established between a signer of a document anywhere in the world and a verifier

(acceptor) of the document anywhere else in the world. While legally and technically

foreboding, this can be done in a manner similar to the travelers check or credit card
infrastructure. Financial liability is minimized by the service providers but residual

liability is assumed by the providers (spreading the losses over the users of the
service).

Key Management and Distribution

Key management and distribution on an international scale is more foreboding than
providing a digital signature service for several reasons. However, in order to have
confidentiality protection of sensitive communications, data encryption is necessary.

This, in turn, requires the availability of “matched” keys (symmetric

encryption/decryption algorithms use identical keys; asymmetric algorithms use a
matched pair) at the point of encryption and the destination point of decryption. A
secure key management system is needed within the security infrastructure to provide

the necessary services.

Non-Repudiation of Transactions

Commerce is conducted among diverse organizations in distributed locations.

Organizations that conduct continuing business with each other usually have contracts

or agreements establishing transaction and liability limits. However, some
organizations conduct many one-time transactions (usually individually and small in

value) with individuals or organizations. Both types of business need protection from

denial that the transaction transpired. In small value transactions, the attendant risk is

small and protection may not be an integral part of the service. However, in large

value transactions based on rapidly changing markets (e.g., stocks and commodities),

the attendant risk is high and the protection is needed. Time stamps and Trusted Third

Party seals are required as well as information repositories and conflict resolution

services. These services could be offered by providers different than the more

common security services.

Key Escrow

The concept of escrowing cryptographic keys has grown since the April, 1993,

announcement of the proposed Escrowed Encryption Standard by the U.S.

government. In that proposal, the “escrowed key” was given to one or more “escrow

agents” which would relinquish the key under certain conditions to certain unnamed
parties. The proposed government standard escrowed a cryptographic key unique to

each hardware device implementing the standard with two government agencies

(each holding a component of the key) who relinquished the key to government

authorities when authorized by government rules. Commercial organizations found a



little too much “government” in this proposal. However, some commercial
organizations embarked on programs to develop commercial devices and services

that would escrow the key (or keep a copy of the key available through a key recovery

process) using commercial procedures for commercial purposes when authorized by

the commercial users. Law enforcement could use its long standing legal rights to

access facilities and information. A recent government initiative is calling for broader

applicability of these programs and a harmonization of the needs of government and
commercial industry. Such needs could be met by support of escrowing keys in the

security infrastructure in addition to, or in conjunction with, the key management
services. A great deal of legal and technical work must be done in this area for

international encryption applications.

Recommendations

Specifically we recommend actions in several areas we believe are essential to

establishing a security infrastructure. In addition, we include a discussion of the cost of

establishing the infrastructure and the organizations most likely to succeed as service

providers.

Action Areas

Participants in this workshop and similarly interested parties should work to establish

technical standards and profiles for interoperability and mobility. An essential

component of interoperability is the ability to replace a technology as a result of its

evolution or having been succeeded.

Technical products should then be developed and offered for sale implementing

these. Services should be developed by candidate service providers that match the

requirements of these products, initially providing low cost services to the early users.

Governments should be a catalyst in both processes, assisting in the development of

the standards, profiles, initial applications, and initial services. Registration of services

should be performed, with full disclosure in areas such as risk assignment and long-

term service assurance.

Governments should also take an active role in establishing strong certification chains

of assurance for intra-government purposes, for government-private sector purposes,

and for international purposes, both inter-government and commercial uses. Early

establishment of these chains, perhaps including ones that support applications

requiring very high assurance to ones supporting very low cost, ubiquitous needs, is

mandatory for the fielding of the needed integrated international security infrastructure

envisioned by these authors.

Cost Model

The most difficult part of establishing an international security infrastructure providing

the needed security services is deciding who will pay for it. Within the U.S., costs are



ultimately borne by one of two groups: the consumers or the government. Optimally,
the government is tasked for providing for the common good and the taxpayers are
tasked with providing the common funds. Pragmatically, special interest groups
influence what projects are performed by the government and how they are paid for.

Consumers are usually offered services in a competitive (in some sense) market but

can be a captive consumer of public regulated services.

The second most difficult part is scheduling the development and dispersal of products
and services. Products are needed before services are offered and few users want to

procure products unless they are assured that the needed services will be available.

Cars require gas stations which require cars. In general, products come first with the

early users struggling to provide services for themselves or their closed user group.

An optimum cost model would be one where the product providers have formed
associations with a service provider that can easily scale services to the number of

users. The first products will cost more but initial services can be provided “free.”

Once product competition brings the cost of products down to where large numbers of

consumers can enter the market, then profits often follow the “best” service provider.

Cellular telephone service is an interesting model to study in this regard.

Early “portable” cellular phones cost about $1000, plus several hundred dollars to

install in an automobile. They could be moved, but with difficulty. The price of service

was not cheap but, even so, the revenues from the early users still not justify the

installation and operation cost. However, today, a customer can get a truly portable

cellular phone for a (subsidized) price of less than $50 (often free) with activation of a

service (usually with a minimum 1-2 year duration and sometimes with a minimum
monthly usage). The activation fee becomes the sales commission, the monthly

minimum pays for the telephone, and the usage charge pays for the service. This may
be a reasonable target model for the development of a security infrastructure.

However, the model works for cellular telephones because of the regulations on radio

frequency allocations and the assignment of service areas to a few (generally 2)

service providers.

Service Providers

Providers of commercial services fall under many diverse rules and regulations,

ranging from FCC regulating of communications carriers, federal licensing of

commercial banks, state licensing of nurses, county licensing of plumbers, and local

licensing of masseuses. To date, there are no ubiquitous rules and regulations of

security service providers (special security services like inter-bank wire funds transfers

are usually regulated as a part of organizational regulations).

Successful security service providers will probably satisfy the following criteria: well

established in another service area; widely distributed throughout a geographic area;

associated internationally with organizations providing services in other countries;

large consumer of its own security services internally; no inherent technical conflict of

interest. Organizations (organized in a priority decreasing with the number of times



they have been considered for this role) typically meeting these criteria include: postal

services, communications services, financial services, transportation services, medical

services, military services, and organized religions. The latter are considered by some
as good candidates for providing trusted third party services.
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The 1994 RublicKey Infrastructure Study prepared by the MITRE Corporation for the National

Institute of Standards and Technology (NIST), contained one section that addressed the issue of

cost. Since the issuance of that document little has been published about the cost that will be

incurred in the development and operation of the Federal Public Key Infrastructure (FPKI). It is

the intent of this paper to suggest that additional research will be required so that the entire range

of government institutions that become involved in budgetary decision making will have

sufficient information upon which to make sound resource allocation decisions. If solid, well

supported cost information is not available, the implementation of important components of the

FPKI may be delayed. Of equal importance is the fact that user agencies may not be able to

anticipate adequately their initial and recurring costs. The ultimate objective of the FPKI is to

deliver an efficient and cost effective service to the user agencies.

One of the surprising discussions that has not been held to date involves the costs inherent in the

development and operation of the FPKI. In some respects this issue has been obscured by other

technical, managerial and organizational issues such as: (1) Should the FPKI support both the

DSS and RSA, or just the DSS?
; (2) What is the relationship of the Security Infrastructure

Program Management Office and NIST’s PKI activities?
;
and (3) What is the proper allocation

of the Innovation Funds between NIST and GSA. The author believes that since the issuance of

the MITRE study little additional research has been done into the cost issues associated with the

creation FPKI. Yet in this time of constrained federal budgetary resources, this very issue must

be a constant consideration impacting all basic FPKI technical and managerial decisions.

The author has been disappointed by the lack of critical analysis and comments regarding Section

6, “Infrastructure Cost Analysis Results,” of the MITRE study. While the material presented in

the study is based upon the best information and analysis available at the time the report was

prepared, there are some basic assumptions that have not been rigorously questioned or

challenged. Yet the potential costs projected in Section 6 are rather significant, and in some

respects overwhelming. For example the study asserts on page 6-6, that if one assumes that each

federal employee is provided with a hardware implementation that contains the user’s private

keys and signing capability, the estimated start-up cost is in excess of one billion dollars. If these

figures are accurate, will this funding be available over the next ten year? This is but one of the

significant costs identified in the MITRE report. Another is the maintenance of the Certificate

Revocation List (CRL), estimated to cost between $610 million and $780 million per year,

assuming that all federal employees are enrolled in the FPKI. Clearly someone in the GAO or

the Congress may in the future suggest that there are cheaper, less sophisticated alternatives to



accomplish the government’s fundamental business without resorting to digital signatures.

Therefore it is imperative that each stage in the development of the FPKI takes into account the

issue of initial and annual operating costs. A solid business case for FPKI must be established at

each step in the evolution of this important activity. Without this perspective the entire project

may be vulnerable to the fiscal realities that confront government managers for the foreseeable

future.
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Public Key Infrastructure Study - Cost
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